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Abstract: 

The pharmaceutical sector is caught in a critical situation, where the 

conventional de novo drug discovery has become unsustainable due to 

high costs, long development time, and poor success. Simultaneously, this 

need of precision therapeutics requires solutions to enable the treatment to 

be tailored to particular subpopulations of patients. Drug repurposing is a 

tactical shortcut, making use of the available safety history of pre-existing 

compounds to expedite the development of therapy. The hypotheses of this 

review are that convergence of artificial intelligence (AI), big data and 

systems pharmacology can provide a reinventive, integrative framework 

that drives this novel paradigm. We describe how AI-based models, which 

are based on systems-level network analysis, can be used to predict new 

drug-disease relationships in a systematic way- not by chance but by 

hypothesis-guided precision repurposing. The discussion includes major 

pillars of methodology, such as signature-based matching and knowledge 

graph reasoning to deep learning on biological networks. Using illustrative 

case studies in oncology, rare diseases and pandemic response, we show 

how an integrative AI workflow, in the context of candidate prioritization 

and mechanistic elucidation, is operationalized. The achievement of this 

potential, however, depends on addressing the major challenges, such as 

data heterogeneity, limitations of algorithms as black boxes, and 

translation problems in validation and regulation. Finally, AI-based 

systems pharmacology will be a paradigm shift of more efficient, guided, 

and patient-centric therapeutic discovery. 

Keywords:  Artificial Intelligence (AI), Drug Repurposing (Drug 

Repositioning), Systems Pharmacology, Precision Therapeutics (Precision 

Medicine), Network Medicine 
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Introduction 

Pharmaceutical research and development are at a 

deep inflection point, and its own success history is 

stretched, and a confluence of technological 

revolutions has been rejuvenated. The historical 

mode of de novo drug discovery, which was 

previously the unquestioned driver of medical 

innovation, is becoming less sustainable and strategic 
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realignment is in favor of more productive 

approaches such as drug repurposing and precision 

therapeutics. This change is not only a matter of 

convenience but a necessity and the result has been a 

perfect storm of economic pressures, scientific 

complexity, and patient demand. It is artificial 

intelligence (AI), big data analytics, and systems 

biology thinking, which offers the necessary structure 

to bring these fragmented strategies to a cohering, 

transformative new approach to biomedicine [1]. 

The Expertise of Increased De Novo Drug 

Discovery and Schedule 

Discovery of new therapeutic molecules has been the 

staple of modern medicine. This de novo process, in 

which a biological target is identified, and millions of 

compounds are screened and leads optimized and a 

candidate shephered through years of clinical trials is 

a wonders of human ingenuity. It is a monument of 

increasing danger, however, and of decreasing 

returns. The statistic that is quoted most about the 

cost of getting a new drug to the market being over 

2.6 billion dollars and taking 10-15 years is not just a 

talking point; it is now a symptom of a structural 

crisis. It is a paradoxical law of Eroom (Moore law in 

reverse) that even with exponential changes in 

technology, the rate of new drugs approved each 

billion dollars spent on research and development has 

been declining about 50 percent every nine years [2-

4]. 

The causes of such an unsustainable course of action 

are complex. The low-hanging fruit of single and 

well-understood targets in diseases such as 

hypertension or infection, has been picked. Modern 

problems, such as neurological disorders, 

complicated autoimmune diseases, most cancers, 

have complex, poorly characterized biological 

networks in which the effects of the targeted 

regulation of a single target are sometimes inadequate 

or associated with unwanted side-effects that are not 

easily predictable. In addition to this, the regulatory 

threshold to safety and efficacy has been 

appropriately increased, hence requiring larger, 

longer and more complicated clinical trials. The 

attrition rate is also disastrous, with more than 90 

percent of candidates who proceed to clinical testing 

lost, in the majority of the cases because of 

insufficiently high efficacy or unexpected toxicity. 

This risky model compels the pharmaceutical 

companies to focus on potential blockbuster 

medication to a large population of patients in the 

name of getting a payoff, unintentionally neglecting 

rare diseases and niche patient groups. The de novo 

pipeline, although it is still necessary to fulfill 

literally unmet needs, is therefore a bottleneck, a 

stressor to the finances and the creative capabilities 

of even the largest of the institutions [5]. 

Drug Repurposing: A Strategic Shortcut to New 

Therapies 

Drug repurposing (or repositioning) has become an 

efficient and viable complementary approach in 

direct response to this bottleneck. It is the discovery 

of new therapeutic applications of existing drugs-

compounds with established safety profiles, 

established manufacturing processes and in many 

cases, previously approved by the regulatory 

authorities. The benefits are undeniable: it will be 

possible to cut years of development timeline and 

save orders of magnitude, millions versus billions 

and even tens of millions. The fact that these 

compounds are de-risked, and have already passed 

Phase I safety trials, enables researchers to shortcut 

much of the preclinical toxicology and formulation 

effort, enabling them to quickly move to proof-of-

concept in patients [6]. 

In history, successful repurposing incidents were 

accidental such as the finding of the use of sildenafil 

in the treatment of erectile dysfunction during its 

development to treat angina. It is an intentional 

systematic effort nowadays. The plan is especially 

powerful during crises, which is reflected by how fast 

dexamethasone and remdesivir were deployed during 

the COVID-19 pandemic. Nevertheless, there are 

challenges associated with repurposing. The apparent 

suspects of most diseases have frequently been 

subject to test. Hurdles that involve science are the 

ability to comprehend the new mechanism of action 

within a different disease setting and the appropriate 

group of patients. There are also serious commercial 

and legal challenges such as extension of the life of 

the patent, gaining regulatory acceptance of the new 

indication, and developing effective pricing and 

reimbursement programs of older, frequently generic 

drugs. Nevertheless, repurposing is an essential 

instrument of providing new drugs more promptly, 
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and it is particularly applicable to underserved 

regions by conventional research and development 

[7]. 

 
Fig: 1 Innovation in the traditional drug development paradigm moving from the randomized controlled trial to gain 

regulatory approval to an all-encompassing collection of real-world evidence in the context of a therapeutic solution 

The Promise and Challenge of Precision 

Therapeutics 

At the same time, medicine is experiencing a 

paradigm shift in its approach to a one-size-fits-all 

paradigm to one of precision therapeutics. This 

paradigm is steered by the revolution of genomics 

with an aim of aligning the right drug at the right 

patient at the right time, with reference to the 

molecular drivers of their disease. The pledge is two-

fold, increased efficacy dramatically in those who 

will respond and avoidance of unnecessary cost and 

toxicity in those who will not. Repeated successes, 

including imatinib of BCR-ABL-positive chronic 

myeloid leukemia and a series of kinase inhibitors 

against cancers with targeted genetic mutations have 

confirmed the approach, producing near-miraculous 

results when narrowly-focused subpopulations are 

affected [8]. 

However, the achievement of a vision of precision 

medicine across all diseases is riddled with 

challenges. The majority of disorders do not resolve 

to one, simple genetic change. They are polygenic, 

environmental, and the complicated interactions of a 

variety of cell types in a tissue microenvironment. 

This biological heterogeneity renders the 

determination of the exact "molecular signature" of 

targeted intervention incredibly hard. Moreover, the 

very strategy of focusing on small groups of patients 

poses a business dilemma: with the patient groups 

getting stratified and narrowed down to smaller and 

smaller biomarker-specific segments, the old-

fashioned blockbuster approach to the economy 

becomes unsustainable. This requires new models of 

drug valuation, development and access. Therefore, 

although precision medicine holds a future of 

extremely more effective and customized treatment, 

the way to achieve it fully is lost in a maze of 

scientific rigidity and economic re-pricing [9]. 

The Confluence of Forces: AI, Big Data in 

Biomedicine, and Systems Thinking 

At the intersection of these three forces, which 

include the failed de novo pipeline, the expedient 

nature of reusing, and convoluted hope of accuracy, a 

revolution confluence is being created. The three are 

the artificial intelligence, big data in biomedicine and 

systems thinking, the catalysts. Combined, they offer 

the intellectual and technological framework that 

would help them to transcend the weaknesses of each 
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approach separately. Big data provides the fuel. We 

are now producing more multi-omic data (genomics, 

transcriptomics, proteomics, metabolomics) than 

ever, high-resolution medical imaging, electronic 

health records and wearable evidence in the real 

world and repositories of structured and unstructured 

scientific literature that are growing daily. This 

information contains the trends of sickness and 

treatment outcome, however it is too large and 

complicated to be analyzed without human input [10-

12]. 

Machine learning and deep learning, in particular, are 

the engines that will decipher these patterns, with the 

help of AI. In the de novo discovery process, AI-

based methods are able to forecast new drug-target 

interactions, generate new, optimized molecular 

structures using design (generative chemistry), and 

screen compound libraries in a manner that is both 

superhumanly fast and accurate. Repurposing AI can 

be used to mine disparate datasets- linking drug-

induced changes in gene expression to clinically-

related genetic signatures, or discovering 

unanticipated correlations between clinical outcomes 

in real-world data- to provide high-probability 

hypotheses of previously unknown drug-disease 

pairs. In the context of precision medicine, AI plays a 

crucial role in the combination of multi-omic data to 

deconvolute disease subtypes, discover predictive 

biomarkers, and align patient-specific traits with the 

most effective treatments [13]. 

This is supported by systems thinking: a shift in a 

reductionist one target one drug perspective of 

disease to a holistic definition of disease as a 

disruption in a complex biological network. AI-based 

models that have been trained on big data are the 

only models that can be used to model such 

networks. They can also forecast the ripple effects of 

perturbing a single node (with a drug), which can be 

used to propose combination therapies to complex 

diseases, determine biomarkers of network state, and 

to uncover previously unanticipated mechanisms of 

action of both new and old drugs. It is a system-

pharmacology perspective that connects repurposing 

to precision medicine; it enables us to view how an 

approved drug would reorganize a maladaptive 

network in a particular patient group based on their 

molecular signature [14]. 

This intersection is forming a new, iterative flywheel 

R&D. Patient data that is analyzed using AI advances 

disease intelligence and makes new targets or 

repurposing candidates. These candidates are then 

also tested and generated new data provides feedback 

to enhance the AI models. The cycle boosts learning 

and minimizes expensive dead-enders. It facilitates 

precision repurposing - not only identifying a new 

disease to apply a drug, but also specifying the group 

of patients who will have it be useful. It also directs 

de novo discovery to targets and chemical matter 

with an increased chance of success in particular 

situations. Strategic drug repurposing has unique 

paradigms and practices, which are gradually coming 

together and getting amplified by the systems 

pharmacology integrative approach and the 

computational capabilities of artificial intelligence. 

The ancient classification of repurposing strategies is 

the activity-based strategies and in silico-first 

strategies. Activity-based approaches e.g. phenotypic 

screening start with a measurable biological 

phenotype e.g. a drug is causing an intended effect on 

a cell or tissue disease model then proceed backward 

to understand how it happens. This black-box 

empirically powerful but might be a sluggish process, 

is known as the function-first-path. On the other 

hand, in silico-first paradigm uses computational 

technologies to forecast repurposing opportunities 

prior to the lab experiment. It is a hypothesis-guided 

method, where large datasets are examined to 

determine new drug-disease relationships and give 

priority to the candidates to be experimentally 

validated, thus speeding up the discovery process and 

saving resources [15]. 

Under these streams of methodology, the strategic 

intent may be further differentiated into, therapeutic 

switching and target-based repurposing. Therapeutic 

switching Therapeutic switching can be the use of a 

drug in a totally different drug area than its initial 

indication, and often the use of a drug is based upon 

serendipitous clinical findings or similarity in 

symptom alleviation (e.g. an antidepressant in 

neuropathic pain). However, Target-based 

repurposing is based on molecular justification. It 

targets new diseases in which the primary pathogenic 

target or off-target profile of the drug is known. It 

involves a thorough knowledge of the 
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polypharmacology of the drug i.e. its capacity to bind 

to various biological targets and the molecular 

architecture of the disease. It is at this point that 

systems pharmacology comes in as the critical 

integrative model and pushes the discipline out of the 

reductionist one drug, one target, one disease 

paradigm [16-20]. 

 
Fig: 2  AI-Enabled Systems Pharmacology Workflow for Drug Repurposing 

The systems pharmacology is the next level of 

molecular target obsession to network medicine. It 

hypothesizes that diseases are due to the distortion of 

complex intracellular and intercellular networks and 

that the effect of drugs is due to the change in the 

state of this network. This perception replaces a drug 

as the key to one lock, but as a message that 

resonates within a biological circuit. It is highly 

facilitated by its major principles. First, it has a 

feature of polypharmacology, but not a bug, a 

systematic mapping of the drug interactions with the 

proteome. Second, it uses network analysis to 

simulate disease-specific interactomes, which 

identify key nodes and pathways whose regulation 

can be used to restore health. Third, it links molecular 

actions to phenotypic responses in cells, tissues and 

organisms, forming causal relationships between 

network perturbation and therapeutic outcome [21]. 

Through comparison of the overlaps between the 

drug and disease network signature, systems 

pharmacology can make rational predictions about 

which known compounds would have to push an 

ailing network back to health. This process is multi-

scale and cannot be made without artificial 

intelligence and machine learning (AI/ML). AI/ML 

offers the computing toolset to identify significant 

trends in the high-dimensional, noisy biology data. 

Learning algorithms that are supervised are trained 

with labeled information, e.g., known pairs of drugs 

and diseases, to make predictions about new 

associations or group drugs according to their likely 

efficacy in treating a particular condition. 

Unsupervised learning methods, including clustering, 

discover latent structures without assigned labels, 

discovering new disease subtypes or grouping drugs 

based on their systems-scale effects, which may 

sometimes identify unexpected repurposing 

possibilities. Certain fundamental AI/ML methods 

have become fundamental. Deep Learning 

architectures are especially powerful: Convolutional 

Neural Networks (CNNs) are especially well-suited 

to process image-based data, such as high-content 

screening or histology, Graph Neural Networks 

(GNNs) are the only models that can directly 

operationalize systems pharmacology concepts, and 

Recurrent Neural Networks (RNNs) are uniquely 

well-posed to process sequential data, such as time-

series gene expression. Natural Language Processing 

(NLP) is a process that searches through the large 

volumes of unorganized knowledge that is found in 

the scientific literature, patent databases, and clinical 

notes and finds, or extracts, the implicit relationships 

between things to produce novel hypotheses. Lastly, 

Knowledge Graphs are data models that combine all 
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of these disparate data streams, structured databases, 

network models, and NLP-extracted relationships 

into one unified queryable representation of 

biomedical knowledge. This enables complex 

reasoning, e.g. through the use of shared genes, 

pathways and comorbidities to link a drug to a 

disease and thus discover mechanistically-supported 

repurposing opportunities that would otherwise be 

obscured by siloed analysis [22-25]. 

The AI-Enabled Toolkit for Repurposing 

The artificial intelligence approach to drug 

repurposing is fundamentally transformative: based 

on a synergistic base, a robust, multi-faceted data 

layer that drives advanced algorithmic models. This 

infrastructure is self-perpetuating with different 

biological and clinical information educating smart 

systems, who subsequently produce new knowledge, 

which improves our comprehension of the 

information, itself. Data layer is the fuel of AI engine, 

which brings together different streams of 

information into a knowledge space. Omics data: a 

multi-dimensional view on biological states, Omics 

data gives a comprehensive description of molecular 

profiles, a combination of genomics, transcriptomics 

and proteomics data. Such datasets display the 

molecular patterns of disease and the global effect of 

drug perturbations and are the basis of signature-

based matching. Recovery discovery is based on the 

human pathophysiology through Clinical and Real-

World Data (RWD), which is obtained based on the 

electronic health records (EHRs) and large-scale 

biobanks. RWD has connected molecular signatures 

with clinical phenotype, discovered treatment 

outcome at the population scale, and unexpected 

drug-disease course interactions, providing a treasure 

trove of real-world confirmation of computational 

hypotheses [26]. The known drug-target interactions, 

protein structures, and metabolic pathways are 

compiled into structured chemical and biological 

bodies of knowledge, thus, providing the established 

rulebook of pharmacology. These human-selected 

resources provide the ground truth of training 

algorithms. Lastly, Natural Language Processing 

(NLP) of literature mining unlocks the immeasurable, 

unstructured knowledge contained in millions of 

scientific papers and clinical records, and gets latent 

relationships and contextual evidence that might 

otherwise go undiscovered in structured databases. 

Such streams of data, when combined, form an 

interrelated substrate on which computational 

operations can be performed. In order to derive 

meaningful hypothesis concerning repurposing out of 

this data deluge, a hierarchy of algorithmic 

approaches and models is used. The signature-based 

techniques, like the gene expression connectivity 

mapping (an example of which is the LINCS project), 

compare the transcriptional fingerprint that a drug 

induces to the fingerprint of a disease condition. The 

fundamental idea is that a signature drug which is 

antithetical to a disease signature (negative 

association) is a candidate therapeutic that provides a 

potent, high-throughput screening paradigm in silico. 

The principles of systems pharmacology are 

operationalized using network-based methods. They 

superimpose drug and disease data on complex 

protein-protein interactions, signaling pathways, and 

metabolism reactions. These models can rank drugs 

in terms of their network distance to a disease and 

prioritize those that interact with neighboring or 

central nodes of the network by identifying 

overlapping sets of nodes, the disease module, and 

can rank drugs based on their network distance to the 

disease, giving those with neighbors or neighbors a 

higher priority [27]. 

Machine Learning predictors are more direct and 

inference based. Classifiers and regression models 

are trained on known examples to learn the intricate 

relationships that are used to predict new drug-target 

interactions (DTI) or drug-disease associations 

(DDA), and typically take into account features of 

chemical structures, protein sequences, and 

phenotypic data. This is greatly boosted in Deep 

Learning architectures. GNNs are singularly efficient 

at modeling the intrinsically relational data of 

biological systems, reasoning about meaningful 

representations of molecular structure (drug 

structures) and of enormous interaction networks. 

Transformer models, known to be successful in NLP, 

learn and process biological sequences (e.g., protein 

amino acid chains), as well as large volumes of 

scientific text, producing contextualized embeddings 

that learn rich semantic relationships [28]. 
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 Fig: 3 The evolving landscape of AI-assisted drug discovery. The integration of AI-driven approaches can 

potentially revolutionize each stage of the process, leading to accelerated timelines, reduced costs, and improved 

success rates 

Knowledge graph embeddings represent the best 

point of data integration. In this case, drugs, diseases, 

genes and side effects, and their associations (treats, 

inhibits, associates_with) are combined into a huge 

heterogeneous graph. Then AI models are trained on 

the low-dimensional (vector) representations 

(embeddings) of each entity, and the learners are 

placed in a mathematical space where geometrical 

relationships (such as proximity) are represented with 

biological or pharmacological relationships. This 

allows complex multi-hop inference and hypothesis 

learning- such as the inference of a new drug-disease 

relationship by walking through common targets or 

comorbidities. Lastly, the generative AI transcends to 

creation instead of prediction. Although it is mainly 

seen in de novo drug design, in repurposing it can be 

applied to optimize existing drug structures to new 

target profiles or, of greater importance, to design 

rational combination therapies by computing the 

synergistic network effects of two or more drugs [29]. 

Implementing the Systems Pharmacology Pipeline 

The drug repurposing integrative AI workflow is 

considered a paradigm shift in that serendipity is 

replaced by systematic, hypothesis-based discovery. 

This pipeline starts with accurate definition of 

problems and data curation, where heterogeneous 

data of the real world, genomics to electronic health 

records, are combined and harmonized. This drives 

development of multi-scale systems to model the 

biology of disease in molecular, cellular, tissue, and 

organismal scales, to form a digital twin of disease 

pathophysiology. These models are then interrogated 

using AI-driven inference, and the priorities of drug 

candidates are their prediction of the ability to 

reverse or modulate the disease network signatures. 

Lastly, in silico validation revises these predictions 

with mechanistic simulations e.g. docking 

experiments or network perturbation experiments to 

clarify a candidate putative mode of action prior to 

the expensive wet-lab experiments [30]. This 

framework has been found to be helpful in wide-

ranging therapeutic sphere. It complements non-

oncology drugs with tumor genomic vulnerabilities in 

oncology. In rare diseases, it makes use of limited 

patient information by using models constructed on 

common pathway biology. Network medicine 

methods have revealed new targets in network maps 

of protein interactions in complicated neurological 
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diseases. The COVID-19 pandemic clearly illustrated 

how quickly this strategy can be implemented where 

AI platforms in a short period of time screened 

thousands of already available drugs to identify 

potential antiviral and anti-inflammatory agents that 

could be subjected to clinical trials [31-33]. 

Nevertheless, there exist serious obstacles to the 

massive implementation. Challenges in data, such as 

data bias, noise, and silos, reduce model resilience, 

and strict compliance with the principles of FAIR 

(Findable, Accessible, Interoperable, Reusable) is 

required. Algorithms do still have problems (such as 

the so-called black box problem), where 

explainability is lacking, and it is harder to 

understand the mechanistic interpretation, and that is 

why Explainable AI (XAI) is needed. Moreover, the 

generalizability of a model is usually a problem 

outside of the training data [34]. The most daunting 

one is the translational gap: an in silico prediction 

would have to cross the valley of death to be in vivo 

and clinical validated. This process is made difficult 

by non-standard regulatory approaches to AI-

informed repurposing, ambiguous intellectual 

property environments around ancient drugs, and dis-

incentive economic incentives of drug companies. 

Therefore, although the idea of AI-driven repurposing 

is a powerful instrument, it completely depends on 

the ability to address these combined scientific, 

technical, and translational obstacles [35]. 

Conclusion  

Artificial intelligence and systems pharmacology are 

coming together to signify a critical evolution in the 

field of research in biomedical studies. Such synergy 

turns drug repurposing into an endeavor that is 

sporadic and uncoordinated into a systematic and 

scalable driver of accuracy therapeutics. The 

systematic prediction of how known drugs could 

restructure diseased biological systems in patient 

cohorts can now be done by building multi-scale 

network models and using state-of-the-art AI 

inference algorithms. The paradigm, which is known 

as preciseness repurposing, solves both problems of 

therapeutic innovation directly: to deliver with 

increased speed, and to increase the personalization. 

The AI-enabled toolkit, which is based on 

connectivity mapping, graph neural networks, 

knowledge graph reasoning, and other tools, is a 

potent way to come up with high-confidence 

hypotheses as demonstrated by applications in 

oncology and pandemic response. The workflow 

reduces the original discovery schedule by a 

significant factor, and eliminates the risk to clinical 

validation. However, there has been consistent 

obstacles on the way to the bedside of a patient since 

the in silico prediction. Existence of biomedical data 

quality and interoperability, lack of transparent 

regulatory and financial routes of repurposed 

generics, and interpretability of complex AI models 

are significant impediments to translation. The future 

development thus depends on the interdisciplinary 

cooperation. It needs to be guided by the principles of 

FAIR data, construct answerable AI (XAI) systems to 

build biological understanding, and actively 

participate in dialog with regulators to influence 

adaptive approval routes. 
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