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Dr. Swarnlata Panchal The pharmaceutical sector is caught in a critical situation, where the

] conventional de novo drug discovery has become unsustainable due to
Email: high costs, long development time, and poor success. Simultaneously, this
need of precision therapeutics requires solutions to enable the treatment to

be tailored to particular subpopulations of patients. Drug repurposing is a
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DOI: 10.62896/ijpdd.3.1.07 tactical shortcut, making use of the available safety history of pre-existing
compounds to expedite the development of therapy. The hypotheses of this
Conflict of interest: NIL review are that convergence of artificial intelligence (Al), big data and

systems pharmacology can provide a reinventive, integrative framework
that drives this novel paradigm. We describe how Al-based models, which
are based on systems-level network analysis, can be used to predict new
drug-disease relationships in a systematic way- not by chance but by
hypothesis-guided precision repurposing. The discussion includes major
pillars of methodology, such as signature-based matching and knowledge
graph reasoning to deep learning on biological networks. Using illustrative
case studies in oncology, rare diseases and pandemic response, we show
how an integrative Al workflow, in the context of candidate prioritization
and mechanistic elucidation, is operationalized. The achievement of this

Article History

Received: 12/12/2025
Accepted: 19/02/2026
Published: 19/02/2026

potential, however, depends on addressing the major challenges, such as
data heterogeneity, limitations of algorithms as black boxes, and
translation problems in validation and regulation. Finally, Al-based
systems pharmacology will be a paradigm shift of more efficient, guided,
and patient-centric therapeutic discovery.
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Introduction revolutions has been rejuvenated. The historical
Pharmaceutical research and development are at a mode of de novo drug discovery, which was
deep inflection point, and its own success history is previously the unquestioned driver of medical
stretched, and a confluence of technological innovation, is becoming less sustainable and strategic
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realignment is in favor of more productive
approaches such as drug repurposing and precision
therapeutics. This change is not only a matter of
convenience but a necessity and the result has been a
perfect storm of economic pressures, scientific
complexity, and patient demand. It is artificial
intelligence (AI), big data analytics, and systems
biology thinking, which offers the necessary structure
to bring these fragmented strategies to a cohering,
transformative new approach to biomedicine [1].

The Expertise of Increased De Novo Drug
Discovery and Schedule

Discovery of new therapeutic molecules has been the
staple of modern medicine. This de novo process, in
which a biological target is identified, and millions of
compounds are screened and leads optimized and a
candidate shephered through years of clinical trials is
a wonders of human ingenuity. It is a monument of
increasing danger, however, and of decreasing
returns. The statistic that is quoted most about the
cost of getting a new drug to the market being over
2.6 billion dollars and taking 10-15 years is not just a
talking point; it is now a symptom of a structural
crisis. It is a paradoxical law of Eroom (Moore law in
reverse) that even with exponential changes in
technology, the rate of new drugs approved each
billion dollars spent on research and development has
been declining about 50 percent every nine years [2-
4].

The causes of such an unsustainable course of action
are complex. The low-hanging fruit of single and
well-understood targets in diseases such as
hypertension or infection, has been picked. Modern
problems, such as neurological disorders,
complicated autoimmune diseases, most cancers,
have complex, poorly characterized biological
networks in which the effects of the targeted
regulation of a single target are sometimes inadequate
or associated with unwanted side-effects that are not
easily predictable. In addition to this, the regulatory
threshold to safety and efficacy has been
appropriately increased, hence requiring larger,
longer and more complicated clinical trials. The
attrition rate is also disastrous, with more than 90
percent of candidates who proceed to clinical testing
lost, in the majority of the cases because of
insufficiently high efficacy or unexpected toxicity.
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This risky model compels the pharmaceutical
companies to focus on potential blockbuster
medication to a large population of patients in the
name of getting a payoff, unintentionally neglecting
rare diseases and niche patient groups. The de novo
pipeline, although it is still necessary to fulfill
literally unmet needs, is therefore a bottleneck, a
stressor to the finances and the creative capabilities
of even the largest of the institutions [5].

Drug Repurposing: A Strategic Shortcut to New
Therapies

Drug repurposing (or repositioning) has become an
efficient and viable complementary approach in
direct response to this bottleneck. It is the discovery
of new therapeutic applications of existing drugs-
compounds with established safety profiles,
established manufacturing processes and in many
cases, previously approved by the regulatory
authorities. The benefits are undeniable: it will be
possible to cut years of development timeline and
save orders of magnitude, millions versus billions
and even tens of millions. The fact that these
compounds are de-risked, and have already passed
Phase I safety trials, enables researchers to shortcut
much of the preclinical toxicology and formulation
effort, enabling them to quickly move to proof-of-
concept in patients [6].

In history, successful repurposing incidents were
accidental such as the finding of the use of sildenafil
in the treatment of erectile dysfunction during its
development to treat angina. It is an intentional
systematic effort nowadays. The plan is especially
powerful during crises, which is reflected by how fast
dexamethasone and remdesivir were deployed during
the COVID-19 pandemic. Nevertheless, there are
challenges associated with repurposing. The apparent
suspects of most diseases have frequently been
subject to test. Hurdles that involve science are the
ability to comprehend the new mechanism of action
within a different disease setting and the appropriate
group of patients. There are also serious commercial
and legal challenges such as extension of the life of
the patent, gaining regulatory acceptance of the new
indication, and developing effective pricing and
reimbursement programs of older, frequently generic
drugs. Nevertheless, repurposing is an essential
instrument of providing new drugs more promptly,
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and it is particularly applicable to underserved
regions by conventional research and development
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Fig: 1 Innovation in the traditional drug development paradigm moving from the randomized controlled trial to gain
regulatory approval to an all-encompassing collection of real-world evidence in the context of a therapeutic solution

The Promise of Precision
Therapeutics

At the same time, medicine
paradigm shift in its approach to a one-size-fits-all
paradigm to one of precision therapeutics. This
paradigm is steered by the revolution of genomics

with an aim of aligning the right drug at the right

and Challenge

is experiencing a

patient at the right time, with reference to the
molecular drivers of their disease. The pledge is two-
fold, increased efficacy dramatically in those who
will respond and avoidance of unnecessary cost and
toxicity in those who will not. Repeated successes,
including imatinib of BCR-ABL-positive chronic
myeloid leukemia and a series of kinase inhibitors
against cancers with targeted genetic mutations have
confirmed the approach, producing near-miraculous
results when narrowly-focused subpopulations are
affected [8].

However, the achievement of a vision of precision
medicine across all diseases is riddled with
challenges. The majority of disorders do not resolve
to one, simple genetic change. They are polygenic,
environmental, and the complicated interactions of a
variety of cell types in a tissue microenvironment.

This  biological  heterogeneity = renders  the
determination of the exact "molecular signature" of
targeted intervention incredibly hard. Moreover, the
very strategy of focusing on small groups of patients
poses a business dilemma: with the patient groups
getting stratified and narrowed down to smaller and
smaller biomarker-specific segments, the old-
fashioned blockbuster approach to the economy
becomes unsustainable. This requires new models of
drug valuation, development and access. Therefore,
although precision medicine holds a future of
extremely more effective and customized treatment,
the way to achieve it fully is lost in a maze of
scientific rigidity and economic re-pricing [9].

The Confluence of Forces: AI, Big Data in
Biomedicine, and Systems Thinking

At the intersection of these three forces, which
include the failed de novo pipeline, the expedient
nature of reusing, and convoluted hope of accuracy, a
revolution confluence is being created. The three are
the artificial intelligence, big data in biomedicine and
systems thinking, the catalysts. Combined, they offer
the intellectual and technological framework that
would help them to transcend the weaknesses of each
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approach separately. Big data provides the fuel. We
are now producing more multi-omic data (genomics,
transcriptomics, proteomics, metabolomics) than
ever, high-resolution medical imaging, electronic
health records and wearable evidence in the real
world and repositories of structured and unstructured
scientific literature that are growing daily. This
information contains the trends of sickness and
treatment outcome, however it is too large and
complicated to be analyzed without human input [10-
12].

Machine learning and deep learning, in particular, are
the engines that will decipher these patterns, with the
help of Al In the de novo discovery process, Al-
based methods are able to forecast new drug-target
interactions, generate new, optimized molecular
structures using design (generative chemistry), and
screen compound libraries in a manner that is both
superhumanly fast and accurate. Repurposing Al can
be used to mine disparate datasets- linking drug-
induced changes in gene expression to clinically-
related  genetic  signatures, or  discovering
unanticipated correlations between clinical outcomes
in real-world data- to provide high-probability
hypotheses of previously unknown drug-disease
pairs. In the context of precision medicine, Al plays a
crucial role in the combination of multi-omic data to
deconvolute disease subtypes, discover predictive
biomarkers, and align patient-specific traits with the
most effective treatments [13].

This is supported by systems thinking: a shift in a
reductionist one target one drug perspective of
disease to a holistic definition of disease as a
disruption in a complex biological network. Al-based
models that have been trained on big data are the
only models that can be used to model such
networks. They can also forecast the ripple effects of
perturbing a single node (with a drug), which can be
used to propose combination therapies to complex
diseases, determine biomarkers of network state, and
to uncover previously unanticipated mechanisms of
action of both new and old drugs. It is a system-
pharmacology perspective that connects repurposing
to precision medicine; it enables us to view how an
approved drug would reorganize a maladaptive
network in a particular patient group based on their
molecular signature [14].
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This intersection is forming a new, iterative flywheel
R&D. Patient data that is analyzed using Al advances
disease intelligence and makes new targets or
repurposing candidates. These candidates are then
also tested and generated new data provides feedback
to enhance the Al models. The cycle boosts learning
and minimizes expensive dead-enders. It facilitates
precision repurposing - not only identifying a new
disease to apply a drug, but also specifying the group
of patients who will have it be useful. It also directs
de novo discovery to targets and chemical matter
with an increased chance of success in particular
situations. Strategic drug repurposing has unique
paradigms and practices, which are gradually coming
together and getting amplified by the systems
pharmacology integrative approach and the
computational capabilities of artificial intelligence.
The ancient classification of repurposing strategies is
the activity-based strategies and in silico-first
strategies. Activity-based approaches e.g. phenotypic
screening start with a measurable biological
phenotype e.g. a drug is causing an intended effect on
a cell or tissue disease model then proceed backward
to understand how it happens. This black-box
empirically powerful but might be a sluggish process,
is known as the function-first-path. On the other
hand, in silico-first paradigm uses computational
technologies to forecast repurposing opportunities
prior to the lab experiment. It is a hypothesis-guided
method, where large datasets are examined to
determine new drug-disease relationships and give
priority to the candidates to be experimentally
validated, thus speeding up the discovery process and
saving resources [15].

Under these streams of methodology, the strategic
intent may be further differentiated into, therapeutic
switching and target-based repurposing. Therapeutic
switching Therapeutic switching can be the use of a
drug in a totally different drug area than its initial
indication, and often the use of a drug is based upon
serendipitous clinical findings or similarity in
symptom alleviation (e.g. an antidepressant in
neuropathic pain). However, Target-based
repurposing is based on molecular justification. It
targets new diseases in which the primary pathogenic
target or off-target profile of the drug is known. It
involves a  thorough  knowledge of the
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polypharmacology of the drug i.e. its capacity to bind
to various biological targets and the molecular
architecture of the disease. It is at this point that
systems pharmacology comes in as the critical
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integrative model and pushes the discipline out of the

reductionist one drug, one target, one disease
paradigm [16-20].
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Fig: 2 Al-Enabled Systems Pharmacology Workflow for Drug Repurposing

The systems pharmacology is the next level of
molecular target obsession to network medicine. It
hypothesizes that diseases are due to the distortion of
complex intracellular and intercellular networks and
that the effect of drugs is due to the change in the
state of this network. This perception replaces a drug
as the key to one lock, but as a message that
resonates within a biological circuit. It is highly
facilitated by its major principles. First, it has a
feature of polypharmacology, but not a bug, a
systematic mapping of the drug interactions with the
proteome. Second, it uses network analysis to
simulate  disease-specific  interactomes, which
identify key nodes and pathways whose regulation
can be used to restore health. Third, it links molecular
actions to phenotypic responses in cells, tissues and
organisms, forming causal relationships between
network perturbation and therapeutic outcome [21].
Through comparison of the overlaps between the
drug and disease network signature, systems
pharmacology can make rational predictions about
which known compounds would have to push an
ailing network back to health. This process is multi-
scale and cannot be made without artificial
intelligence and machine learning (AI/ML). AI/ML
offers the computing toolset to identify significant
trends in the high-dimensional, noisy biology data.

Learning algorithms that are supervised are trained
with labeled information, e.g., known pairs of drugs
and diseases, to make predictions about new
associations or group drugs according to their likely
efficacy in treating a particular condition.
Unsupervised learning methods, including clustering,
discover latent structures without assigned labels,
discovering new disease subtypes or grouping drugs
based on their systems-scale effects, which may
sometimes  identify = unexpected  repurposing
possibilities. Certain fundamental AI/ML methods
have become fundamental. Deep Learning
architectures are especially powerful: Convolutional
Neural Networks (CNNs) are especially well-suited
to process image-based data, such as high-content
screening or histology, Graph Neural Networks
(GNNs) are the only models that can directly
operationalize systems pharmacology concepts, and
Recurrent Neural Networks (RNNs) are uniquely
well-posed to process sequential data, such as time-
series gene expression. Natural Language Processing
(NLP) is a process that searches through the large
volumes of unorganized knowledge that is found in
the scientific literature, patent databases, and clinical
notes and finds, or extracts, the implicit relationships
between things to produce novel hypotheses. Lastly,
Knowledge Graphs are data models that combine all
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of these disparate data streams, structured databases,
network models, and NLP-extracted relationships
into one unified queryable representation of
biomedical knowledge. This enables complex
reasoning, e.g. through the use of shared genes,
pathways and comorbidities to link a drug to a
disease and thus discover mechanistically-supported
repurposing opportunities that would otherwise be
obscured by siloed analysis [22-25].

The AI-Enabled Toolkit for Repurposing

The artificial intelligence approach to drug
repurposing is fundamentally transformative: based
on a synergistic base, a robust, multi-faceted data
layer that drives advanced algorithmic models. This
infrastructure is self-perpetuating with different
biological and clinical information educating smart
systems, who subsequently produce new knowledge,
which improves our comprehension of the
information, itself. Data layer is the fuel of Al engine,
which brings together different streams of
information into a knowledge space. Omics data: a
multi-dimensional view on biological states, Omics
data gives a comprehensive description of molecular
profiles, a combination of genomics, transcriptomics
and proteomics data. Such datasets display the
molecular patterns of disease and the global effect of
drug perturbations and are the basis of signature-
based matching. Recovery discovery is based on the
human pathophysiology through Clinical and Real-
World Data (RWD), which is obtained based on the
electronic health records (EHRs) and large-scale
biobanks. RWD has connected molecular signatures
with clinical phenotype, discovered treatment
outcome at the population scale, and unexpected
drug-disease course interactions, providing a treasure
trove of real-world confirmation of computational
hypotheses [26]. The known drug-target interactions,
protein structures, and metabolic pathways are
compiled into structured chemical and biological
bodies of knowledge, thus, providing the established
rulebook of pharmacology. These human-selected
resources provide the ground truth of training
algorithms. Lastly, Natural Language Processing
(NLP) of literature mining unlocks the immeasurable,
unstructured knowledge contained in millions of
scientific papers and clinical records, and gets latent
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relationships and contextual evidence that might
otherwise go undiscovered in structured databases.
Such streams of data, when combined, form an
interrelated substrate on which computational
operations can be performed. In order to derive
meaningful hypothesis concerning repurposing out of
this data deluge, a hierarchy of algorithmic
approaches and models is used. The signature-based
techniques, like the gene expression connectivity
mapping (an example of which is the LINCS project),
compare the transcriptional fingerprint that a drug
induces to the fingerprint of a disease condition. The
fundamental idea is that a signature drug which is
antithetical to a disease signature (negative
association) is a candidate therapeutic that provides a
potent, high-throughput screening paradigm in silico.
The principles of systems pharmacology are
operationalized using network-based methods. They
superimpose drug and disease data on complex
protein-protein interactions, signaling pathways, and
metabolism reactions. These models can rank drugs
in terms of their network distance to a disease and
prioritize those that interact with neighboring or
central nodes of the network by identifying
overlapping sets of nodes, the disease module, and
can rank drugs based on their network distance to the
disease, giving those with neighbors or neighbors a
higher priority [27].

Machine Learning predictors are more direct and
inference based. Classifiers and regression models
are trained on known examples to learn the intricate
relationships that are used to predict new drug-target
interactions (DTI) or drug-disease associations
(DDA), and typically take into account features of
chemical structures, protein sequences, and
phenotypic data. This is greatly boosted in Deep
Learning architectures. GNNs are singularly efficient
at modeling the intrinsically relational data of
biological systems, reasoning about meaningful
representations of molecular structure (drug
structures) and of enormous interaction networks.
Transformer models, known to be successful in NLP,
learn and process biological sequences (e.g., protein
amino acid chains), as well as large volumes of
scientific text, producing contextualized embeddings
that learn rich semantic relationships [28].
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Knowledge graph embeddings represent the best
point of data integration. In this case, drugs, diseases,
genes and side effects, and their associations (treats,
inhibits, associates_with) are combined into a huge
heterogeneous graph. Then Al models are trained on
the (vector)
(embeddings) of each entity, and the learners are
placed in a mathematical space where geometrical
relationships (such as proximity) are represented with
biological or pharmacological relationships. This
allows complex multi-hop inference and hypothesis
learning- such as the inference of a new drug-disease
relationship by walking through common targets or
comorbidities. Lastly, the generative Al transcends to
creation instead of prediction. Although it is mainly
seen in de novo drug design, in repurposing it can be

low-dimensional representations

applied to optimize existing drug structures to new
target profiles or, of greater importance, to design
rational combination therapies by computing the
synergistic network effects of two or more drugs [29].
Implementing the Systems Pharmacology Pipeline
The drug repurposing integrative Al workflow is
considered a paradigm shift in that serendipity is
replaced by systematic, hypothesis-based discovery.

This pipeline starts with accurate definition of
problems and data curation, where heterogeneous
data of the real world, genomics to electronic health
records, are combined and harmonized. This drives
development of multi-scale systems to model the
biology of disease in molecular, cellular, tissue, and
organismal scales, to form a digital twin of disease
pathophysiology. These models are then interrogated
using Al-driven inference, and the priorities of drug
candidates are their prediction of the ability to
reverse or modulate the disease network signatures.
Lastly, in silico validation revises these predictions
with  mechanistic  simulations e.g. docking
experiments or network perturbation experiments to
clarify a candidate putative mode of action prior to
the expensive wet-lab experiments [30]. This
framework has been found to be helpful in wide-
ranging therapeutic sphere. It complements non-
oncology drugs with tumor genomic vulnerabilities in
oncology. In rare diseases, it makes use of limited
patient information by using models constructed on
common pathway biology. Network medicine
methods have revealed new targets in network maps
of protein interactions in complicated neurological
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diseases. The COVID-19 pandemic clearly illustrated
how quickly this strategy can be implemented where
Al platforms in a short period of time screened
thousands of already available drugs to identify
potential antiviral and anti-inflammatory agents that
could be subjected to clinical trials [31-33].
Nevertheless, there exist serious obstacles to the
massive implementation. Challenges in data, such as
data bias, noise, and silos, reduce model resilience,
and strict compliance with the principles of FAIR
(Findable, Accessible, Interoperable, Reusable) is
required. Algorithms do still have problems (such as
the so-called black box problem), where
explainability is lacking, and it is harder to
understand the mechanistic interpretation, and that is
why Explainable Al (XAI) is needed. Moreover, the
generalizability of a model is usually a problem
outside of the training data [34]. The most daunting
one is the translational gap: an in silico prediction
would have to cross the valley of death to be in vivo
and clinical validated. This process is made difficult
by non-standard regulatory approaches to Al-
informed repurposing, ambiguous intellectual
property environments around ancient drugs, and dis-
incentive economic incentives of drug companies.
Therefore, although the idea of Al-driven repurposing
is a powerful instrument, it completely depends on
the ability to address these combined scientific,
technical, and translational obstacles [35].
Conclusion

Artificial intelligence and systems pharmacology are
coming together to signify a critical evolution in the
field of research in biomedical studies. Such synergy
turns drug repurposing into an endeavor that is
sporadic and uncoordinated into a systematic and
scalable driver of accuracy therapeutics. The
systematic prediction of how known drugs could
restructure diseased biological systems in patient
cohorts can now be done by building multi-scale
network models and using state-of-the-art Al
inference algorithms. The paradigm, which is known
as preciseness repurposing, solves both problems of
therapeutic innovation directly: to deliver with
increased speed, and to increase the personalization.
The Al-enabled toolkit, which is based on
connectivity mapping, graph neural networks,
knowledge graph reasoning, and other tools, is a
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potent way to come up with high-confidence
hypotheses as demonstrated by applications in
oncology and pandemic response. The workflow
reduces the original discovery schedule by a
significant factor, and eliminates the risk to clinical
validation. However, there has been consistent
obstacles on the way to the bedside of a patient since
the in silico prediction. Existence of biomedical data
quality and interoperability, lack of transparent
regulatory and financial routes of repurposed
generics, and interpretability of complex Al models
are significant impediments to translation. The future
development thus depends on the interdisciplinary
cooperation. It needs to be guided by the principles of
FAIR data, construct answerable Al (XAI) systems to
build biological understanding, and actively
participate in dialog with regulators to influence
adaptive approval routes.
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