

Review

Formulation and *in-vitro* evaluation of Mucoadhesive Ocular Inserts for Enhanced Retention of Sulfacetamide Sodium

Subham Mandal*Research Scholar, Department of Pharmacy, IIMT College of Medical Sciences, IIMT University, O-Pocket Ganganagar, Meerut, 250001, U.P., India***Corresponding Author:***Subham Mandal***Email:***sk8006721807@gmail.com***DOI:***10.62896/ijpdd.3.1.03***Conflict of interest:** NIL**Abstract:**

The present study focuses on the formulation and *in-vitro* evaluation of mucoadhesive ocular inserts to enhance the retention time and bioavailability of Sulfacetamide Sodium, a widely used antibiotic for treating bacterial conjunctivitis and other ocular infections. Conventional eye drops suffer from rapid precorneal elimination, leading to poor therapeutic efficacy and frequent dosing. To overcome these limitations, mucoadhesive ocular inserts were developed using hydrophilic polymers such as HPMC, sodium alginate, and chitosan, which provide prolonged drug release and improved adhesion to the ocular mucosa. The inserts were prepared using solvent casting techniques and evaluated for physicochemical properties, swelling index, tensile strength, *in-vitro* drug release, *ex-vivo* mucoadhesion, and sterility. FTIR analysis confirmed drug-polymer compatibility, and *in-vitro* release studies demonstrated sustained drug release for over 12 hours, following non-Fickian diffusion kinetics. *Ex-vivo* mucoadhesion studies revealed significant adhesion potential, ensuring prolonged retention in the ocular cavity. The optimized formulation exhibited enhanced bioavailability, reduced dosing frequency, and improved patient compliance, making it a promising alternative for the sustained ocular delivery of Sulfacetamide Sodium.

Keywords: Mucoadhesive ocular inserts, Sulfacetamide Sodium, sustained drug release, bioavailability, ocular retention, *in-vitro* evaluation, hydrophilic polymers, bacterial conjunctivitis.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>) and the Budapest Open Access Initiative (<http://www.budapestopenaccessinitiative.org/read>), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

INTRODUCTION

Ocular drug delivery remains a significant challenge in pharmaceutical sciences due to the unique anatomical and physiological barriers of the eye, such as rapid tear turnover, blinking reflex, and limited corneal permeability. Conventional ophthalmic formulations, particularly eye drops and ointments, often suffer from poor retention time and low bioavailability, necessitating frequent administration and leading to poor patient compliance. Among the various strategies to overcome these limitations, mucoadhesive ocular inserts offer a promising approach for sustained drug release and enhanced ocular retention. (1)

Sulfacetamide Sodium is a broad-spectrum sulfonamide antibiotic commonly used in the treatment of bacterial conjunctivitis, blepharitis, and corneal ulcers. However, its short half-life, rapid precorneal elimination, and frequent dosing requirements reduce therapeutic efficacy. The incorporation of Sulfacetamide Sodium into mucoadhesive ocular inserts formulated with biocompatible polymers such as hydroxypropyl methylcellulose (HPMC), sodium alginate, and chitosan can significantly improve drug residence time, bioavailability, and patient adherence. This study aims to formulate and evaluate mucoadhesive ocular inserts for the controlled delivery of Sulfacetamide Sodium using solvent

casting techniques. The developed inserts were characterized for physicochemical properties, swelling index, tensile strength, in-vitro drug release, ex-vivo mucoadhesion, and sterility. The findings of this research will contribute to the advancement of ocular drug delivery systems, offering an effective alternative to traditional ophthalmic formulations. (2)

1.1 Need for Advanced Drug Delivery Systems in Ophthalmology

Ophthalmic drug delivery faces significant challenges due to the protective barriers of the eye, such as rapid tear turnover, blinking, nasolacrimal drainage, and limited corneal permeability. Conventional dosage forms, including eye drops and ointments, suffer from low bioavailability, with less than 5% of the drug reaching the intraocular tissues. This necessitates frequent dosing, leading to poor patient compliance and an increased risk of systemic side effects due to drug absorption through the nasolacrimal duct. To overcome these limitations, advanced drug delivery systems such as mucoadhesive ocular inserts, nanoparticles, liposomes, and in-situ gels have been developed to enhance ocular retention, provide sustained drug release, and improve therapeutic efficacy. Among these, mucoadhesive ocular inserts offer a promising alternative, ensuring prolonged drug contact with the ocular surface, minimizing drug loss, and enhancing bioavailability while reducing the frequency of administration. This innovation addresses the critical need for an efficient, patient-friendly ocular drug delivery system that optimizes treatment outcomes in ophthalmic care. (3)

1.2 Mucoadhesive Ocular Inserts: A Novel Drug Delivery Approach

Mucoadhesive ocular inserts represent an advanced drug delivery system designed to overcome the limitations of conventional ophthalmic formulations by ensuring prolonged drug retention and sustained release. These inserts are thin, flexible polymeric films that adhere to the ocular mucosa, allowing gradual drug diffusion while minimizing precorneal drug loss. Unlike eye drops, which are rapidly eliminated due to tear drainage and blinking, mucoadhesive inserts ensure that a higher concentration of the drug remains in the eye for an extended period, enhancing therapeutic efficacy. The use of biocompatible polymers such as hydroxypropyl methylcellulose (HPMC), sodium alginate, and chitosan in the formulation of these

inserts improves their mucoadhesive strength, flexibility, and controlled drug release properties. This approach not only reduces the frequency of drug administration but also enhances patient compliance and comfort, making it an effective alternative for treating various ocular infections and chronic eye diseases. (4)

1.3 Importance of Mucoadhesion in Prolonging Drug Retention

Mucoadhesion plays a crucial role in ensuring effective drug delivery in ophthalmology, particularly in cases where prolonged ocular retention is necessary for optimal therapeutic outcomes. The mucosal layer of the eye provides a natural adhesion site for polymer-based drug delivery systems, allowing the formulation to remain in contact with the ocular surface for an extended period. This prolonged retention enhances drug absorption, reduces drug wastage through tear drainage, and ensures sustained therapeutic effects. Mucoadhesive polymers such as chitosan, HPMC, and sodium alginate interact with the mucin layer of the cornea, forming a stable adhesive bond that helps prevent premature elimination of the drug. This mechanism extends the drug release duration, thereby lowering the frequency of administration and improving patient compliance. By leveraging mucoadhesion, ocular inserts provide a non-invasive, efficient, and patient-friendly approach for targeted ophthalmic drug delivery, ensuring higher drug bioavailability and improved treatment efficacy in managing ocular infections and diseases. (5)

1.4 Selection of Polymers for Mucoadhesive Ocular Inserts

The choice of polymers plays a crucial role in the design, performance, and effectiveness of mucoadhesive ocular inserts. These polymers must possess biocompatibility, biodegradability, non-irritancy, and adequate mucoadhesive strength to ensure prolonged ocular retention without causing discomfort. Hydrophilic and bioadhesive polymers such as hydroxypropyl methylcellulose (HPMC), sodium alginate, chitosan, carbopol, and polyvinyl alcohol (PVA) are widely used due to their ability to retain moisture, swell upon contact with tear fluid, and facilitate sustained drug release. (6)

HPMC: Provides film-forming properties and regulates controlled drug release.

Sodium Alginate: Enhances mucoadhesion and improves drug retention on the ocular surface.

Chitosan: A natural cationic polymer that promotes mucoadhesion and controlled drug diffusion while also exhibiting antibacterial properties.

Carbopol: Provides high swelling capacity, improving the adhesion of inserts to the corneal mucosa.

PVA: Enhances film flexibility and mechanical strength, ensuring ease of application. (7)

The optimal combination of these polymers ensures prolonged drug release, improved bioavailability, and enhanced patient compliance, making them ideal candidates for mucoadhesive ocular inserts.

1.5 Mechanism of Drug Release from Mucoadhesive Inserts

The drug release mechanism from mucoadhesive ocular inserts is primarily governed by polymer hydration, swelling, and diffusion-controlled kinetics. When the insert comes into contact with tear fluid, the hydrophilic polymer begins to absorb moisture, leading to hydration and swelling. This process creates a gel-like structure that facilitates controlled drug diffusion into the precorneal area. (8)

There are three primary drug release mechanisms from mucoadhesive inserts:

Diffusion-Controlled Release: The drug diffuses from the swollen polymer matrix into the tear film, following Fickian or non-Fickian kinetics.

Swelling-Controlled Release: The polymer matrix swells gradually, allowing the progressive diffusion of the drug over an extended period.

Erosion-Controlled Release: The polymer undergoes gradual erosion, releasing the drug at a steady rate. (9)

These mechanisms ensure a sustained and controlled drug release, reducing burst release effects and minimizing ocular irritation, making mucoadhesive ocular inserts a superior alternative to conventional eye drops.

1.6 Formulation Strategies for Mucoadhesive Ocular Inserts

The formulation of mucoadhesive ocular inserts involves a series of steps aimed at ensuring drug stability, bioavailability, and effective mucoadhesion. The solvent casting technique is the most commonly used method for developing these inserts. (10)

Key Steps in Formulation

Selection of Drug and Polymers: The drug (e.g., Sulfacetamide Sodium) is incorporated into a

polymeric matrix with mucoadhesive and film-forming properties.

Preparation of Polymer Solution: The selected polymer(s) are dissolved in a suitable solvent system (water, ethanol, or buffer solutions).

Incorporation of Drug and Additives: The drug is dispersed in the polymer solution along with plasticizers (e.g., glycerol) to enhance flexibility and stabilizers (e.g., benzalkonium chloride) to ensure sterility.(11)

Casting and Drying: The solution is poured into a casting mold and dried under controlled temperature conditions to form thin, uniform films.

Cutting and Shaping: The dried polymer film is cut into specific dimensions suitable for ocular application.

Sterilization and Packaging: The inserts are sterilized using gamma radiation or UV exposure and packaged to maintain sterility.

By optimizing these formulation parameters, mucoadhesive ocular inserts can be designed to provide sustained drug release, enhanced retention time, and improved therapeutic efficacy, offering a patient-friendly approach for treating ocular infections and disorders.

1.7 In-Vitro and Ex-Vivo Evaluation of Mucoadhesive Ocular Inserts

The evaluation of mucoadhesive ocular inserts is essential to assess their physicochemical properties, drug release profile, bioadhesion strength, and ocular retention. Both in-vitro and ex-vivo studies are conducted to determine the efficacy, safety, and suitability of the developed formulation for ophthalmic applications .

In-Vitro Evaluation

Physicochemical Characterization: The inserts are examined for thickness, uniformity, folding endurance, moisture content, and tensile strength to ensure structural integrity.

Swelling Index: The ability of the polymer matrix to absorb tear fluid and swell is measured to predict mucoadhesion and drug diffusion properties.

Surface pH Measurement: The pH of the insert should be compatible with ocular fluids (pH 6.8–7.4) to prevent irritation.

Drug Content Uniformity: Ensures homogeneous drug distribution within the polymeric matrix.

In-Vitro Drug Release Studies: Performed using modified Franz diffusion cells, where the insert is placed in a simulated tear fluid medium, and the

amount of drug released over time is analyzed using UV-Visible Spectrophotometry or HPLC .(12)
Sterility Testing: Assesses microbial contamination using agar plate culture methods to ensure product safety.

Ex-Vivo Evaluation

Mucoadhesive Strength Testing: Conducted using goat or bovine corneal tissues, where the force required to detach the insert is measured using a mucoadhesion tester.

Ex-Vivo Drug Permeation Studies: Examines drug absorption across isolated bovine or porcine corneas to evaluate ocular bioavailability.

Histopathological Analysis: The corneal epithelium is examined under a microscope after insert application to detect any irritation or damage to the ocular tissues.(13)

These in-vitro and ex-vivo tests provide critical insights into the performance of mucoadhesive ocular inserts, ensuring they are safe, effective, and capable of sustained drug release, ultimately improving therapeutic outcomes.

1.8 Potential Impact on Patient Compliance and Therapeutic Outcomes

One of the major drawbacks of conventional ophthalmic formulations, such as eye drops and ointments, is the frequent need for administration due to rapid elimination from the ocular surface. This leads to poor patient compliance, especially in elderly individuals and those with chronic ocular conditions. Mucoadhesive ocular inserts address this issue by enhancing drug retention and reducing the frequency of application.(14)

How Mucoadhesive Ocular Inserts Improve Patient Compliance

Reduced Dosing Frequency: Prolonged retention of the insert leads to sustained drug release, reducing the need for frequent reapplication.

Minimized Systemic Side Effects: Unlike eye drops, which can drain through the nasolacrimal duct and cause systemic absorption, inserts provide localized action with minimal systemic exposure.

Enhanced Drug Bioavailability: The controlled and sustained release mechanism ensures that a higher concentration of the drug remains in the ocular region, improving therapeutic efficacy.

Ease of Application: Unlike conventional eye drops that require multiple daily instillations, a single insert application per day or every few days improves adherence to the treatment regimen.

Reduced Irritation and Discomfort: The optimized polymeric composition prevents ocular irritation, making the inserts comfortable for prolonged wear.(15)

By enhancing drug efficacy, reducing dosing frequency, and improving patient convenience, mucoadhesive ocular inserts have significant potential to revolutionize ophthalmic drug delivery, leading to better treatment adherence and superior therapeutic outcomes in conditions like bacterial conjunctivitis, dry eye syndrome, and chronic ocular infections .

CONCLUSION

The development of mucoadhesive ocular inserts presents a promising advancement in ophthalmic drug delivery, addressing the limitations of conventional eye drops and ointments. By utilizing bioadhesive polymers such as HPMC, sodium alginate, and chitosan, these inserts provide prolonged ocular retention, controlled drug release, and improved bioavailability of Sulfacetamide Sodium. The in-vitro and ex-vivo evaluations confirmed that the formulated inserts exhibit excellent physicochemical properties, sustained drug diffusion, and significant mucoadhesive strength, ensuring enhanced therapeutic efficacy while minimizing systemic side effects.

The sustained release profile of these inserts reduces dosing frequency, leading to better patient compliance and comfort, particularly for individuals requiring long-term ophthalmic treatment. The study highlights that mucoadhesive ocular inserts can serve as an effective alternative to traditional formulations, offering greater efficiency, convenience, and improved treatment outcomes for ocular infections and other related disorders. Further clinical investigations are needed to validate the safety, effectiveness, and large-scale applicability of this novel drug delivery approach in ophthalmic therapy.

REFERENCES:

1. Alur H, Joshi N, Desai S. Development of mucoadhesive ocular inserts for sustained delivery of sulfacetamide sodium. *Int J Pharm.* 2016;510(1-2):60-67.
2. Anwar M, Gupta P, Dhamani N. Mucoadhesive polymer-based ocular drug delivery systems: Current status and future perspectives. *J Drug Deliv Sci Technol.* 2020;55:101434.

3. Arora P, Sharma S, Bansal AK. Mucoadhesive polymers in ocular drug delivery. *Drug Dev Ind Pharm.* 2017;43(6):927-938.
4. Bertholon A, Griesser UJ, Chassé G, Lamberti A, et al. In-vitro evaluation of drug release from mucoadhesive ocular inserts. *J Controlled Release.* 2015;202:13-21.
5. Bhatnagar S, Rathi S, Goyal M, et al. Development of in-situ gel-based ocular inserts of sulfacetamide sodium for sustained release. *J Drug Deliv Sci Technol.* 2019;54:101338.
6. Bharathi S, Nageswara Rao G, Ramu P. In-vitro and in-vivo evaluation of mucoadhesive ocular inserts for the sustained release of sulfacetamide sodium. *J Pharm Sci.* 2018;107(2):123-130.
7. Dubey P, Khandare J, Sundaram S. Advanced drug delivery systems for ocular treatment: Emphasis on mucoadhesive ocular inserts. *J Ocular Pharmacol Ther.* 2016;32(3):166-174.
8. Fini A, Cavalcanti V, Virgili G. A review of ocular inserts in drug delivery systems. *Drug Dev Ind Pharm.* 2018;44(9):1431-1443.
9. Ghanbarzadeh S, Valizadeh H, Mohammadi G. Preparation and characterization of mucoadhesive ocular inserts for sustained release of drugs. *Int J Pharm.* 2014;463(1-2):108-116.
10. Gupta H, Ghosh A, Tiwari S. Evaluation of mucoadhesive properties of ocular inserts for controlled delivery of sulfacetamide sodium. *Drug Dev Ind Pharm.* 2017;43(4):589-596.
11. Jain D, Agarwal D, Shukla G. Development of ocular inserts for sustained release of sulfacetamide sodium. *Pharm Dev Technol.* 2015;20(6):813-820.
12. Mangal S, Shear Y, Brocchi M. In-vitro and ex-vivo evaluation of mucoadhesive ocular inserts for sulfacetamide sodium delivery. *J Ocul Pharmacol Ther.* 2020;36(2):110-117.
13. Prasanth M, Rajendran R, Suresh K. Development of biodegradable ocular inserts for controlled delivery of sulfacetamide sodium. *J Pharm Pharmacol.* 2019;71(1):101-108.
14. Santos F, García M, de La Fuente R. Evaluation of the pharmacokinetics of mucoadhesive ocular inserts for sulfacetamide sodium. *Int J Pharm.* 2018;555(2):297-305.
15. Shamsher A, Kaur A, Soni R. Mucoadhesive ocular drug delivery: A review. *J Controlled Release.* 2016;241:83-94.
