

Review

Evaluation of Anti-Inflammatory and Wound Healing Properties of Honey from Different Plant Sources

Subham Mandal

Research Scholar, Department of Pharmacy, IIMT College of Medical Sciences, IIMT University, O-Pocket Ganganagar, Meerut, 250001, U.P., India

Corresponding Author:

Subham Mandal

Email:

sk8006721807@gmail.com

DOI:

10.62896/ijpdd.3.1.02

Conflict of interest: NIL

Article History

Received: 12/12/2025

Accepted: 28/12/2025

Published: 10/01/2026

Abstract: Honey has been widely recognized for its medicinal properties, particularly in anti-inflammatory and wound healing applications. This study evaluates the efficacy of honey derived from different plant sources in modulating inflammatory responses and enhancing tissue regeneration. Various honey samples were analyzed for their phytochemical composition, antioxidant activity, and antibacterial properties to determine their therapeutic potential. In vitro and in vivo assays were conducted to assess their ability to reduce inflammation and accelerate wound closure. The results indicate that honeys sourced from *Melaleuca*, *Eucalyptus*, and *Trifolium* species exhibit significant anti-inflammatory effects due to their high flavonoid and phenolic content. Moreover, the wound healing efficiency of these honeys was found to be superior to conventional treatments, suggesting their potential use in alternative medicine and pharmaceutical formulations. This study highlights the role of honey as a natural bioactive agent and underscores the importance of plant source selection for optimized therapeutic benefits.

Keywords: Honey, Anti-inflammatory, Wound healing, Phytochemicals, Antioxidant activity, Medicinal properties, Tissue regeneration, Flavonoids, Phenolic compounds, Alternative medicine

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>) and the Budapest Open Access Initiative (<http://www.budapestopenaccessinitiative.org/read>), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

INTRODUCTION

Honey has been used for centuries in traditional medicine for its therapeutic properties, particularly in the treatment of wounds and inflammatory conditions. It is a complex natural substance composed of sugars, amino acids, vitamins, minerals, and bioactive compounds, including flavonoids and phenolic acids, which contribute to its pharmacological activities. The anti-inflammatory and wound healing properties of honey have been attributed to its antimicrobial activity, osmotic effect, and ability to promote tissue regeneration.

The botanical origin of honey plays a crucial role in determining its biochemical composition and therapeutic potential. Different plant sources influence the concentration of antioxidants, enzymes, and bioactive compounds, which in turn affect honey's efficacy in reducing inflammation

and accelerating wound healing. Previous research has demonstrated that honeys derived from *Melaleuca*, *Eucalyptus*, and *Trifolium* species exhibit notable anti-inflammatory and antimicrobial effects, making them valuable candidates for medical applications.(1)

Despite extensive studies on the medicinal properties of honey, there remains a need for comparative analysis of honeys from different floral sources to establish their specific contributions to wound healing and inflammation reduction. This study aims to evaluate the anti-inflammatory and wound healing properties of honey obtained from various plant sources, examining their phytochemical composition, antioxidant activity, and effectiveness in promoting tissue regeneration. The findings of this research could provide insights into the optimal selection of honey types for

therapeutic use, supporting their integration into modern medical and pharmaceutical applications.(2)

1.1 Background of Honey in Traditional Medicine

Honey has been an integral part of traditional medicine across various cultures for centuries. Ancient civilizations, including the Egyptians, Greeks, Romans, and Chinese, recognized its medicinal value and used it to treat wounds, infections, and digestive disorders. In Ayurvedic and Unani medicine, honey has been prescribed as a natural remedy for ailments such as sore throats, ulcers, and skin conditions due to its antimicrobial, anti-inflammatory, and soothing properties. Traditional healers across Africa and the Middle East have also utilized honey as a wound dressing, owing to its ability to promote healing and prevent infections. In historical medical texts, such as the *Ebers Papyrus* from ancient Egypt and Hippocrates' writings in ancient Greece, honey has been described as a potent therapeutic agent for wound care and general health maintenance. Its natural composition, rich in sugars, enzymes, and bioactive compounds, has contributed to its widespread use as a natural medicine. Despite advancements in modern medicine, honey continues to be an important component of alternative and complementary therapies, especially for wound healing and inflammation management. Scientific research has begun to validate many of these traditional claims, further highlighting honey's relevance in contemporary medical applications.(3)

1.2 Composition and Bioactive Compounds of Honey

Honey is a complex natural substance composed of various bioactive compounds that contribute to its medicinal properties. Its primary components include carbohydrates, predominantly fructose (38%) and glucose (31%), which provide its characteristic sweetness and energy-rich nature. Apart from sugars, honey contains a wide range of essential nutrients, including amino acids, vitamins (such as vitamin C, B-complex vitamins), minerals (such as potassium, calcium, and magnesium), and organic acids. Additionally, honey is rich in bioactive compounds, such as flavonoids, phenolic acids, and enzymes like glucose oxidase and catalase, which play a key role in its antioxidant, antimicrobial, and anti-inflammatory activities. The presence of hydrogen peroxide, methylglyoxal (in *Manuka* honey), and bee defensin-1 further

enhances honey's antibacterial properties. The composition of honey varies significantly depending on its botanical and geographical origin, which influences its therapeutic efficacy. These bioactive compounds make honey a potent natural remedy for wound healing, immune modulation, and the management of various inflammatory and microbial infections.(4)

1.3 Pharmacological Properties of Honey

Honey exhibits a wide range of pharmacological properties that have been extensively studied in both traditional and modern medicine. One of its most well-documented properties is its antimicrobial activity, which is attributed to its low water content, high osmolarity, low pH, and the production of hydrogen peroxide. These characteristics create an inhospitable environment for bacterial growth, making honey an effective natural antibiotic. Additionally, honey possesses significant anti-inflammatory properties, which help reduce swelling, pain, and oxidative stress in damaged tissues. The presence of flavonoids and phenolic acids contributes to its strong antioxidant capacity, which helps neutralize free radicals and prevent cellular damage.(5) Honey is also known for its wound healing potential, as it promotes angiogenesis, collagen synthesis, and epithelialization, accelerating the recovery process. Moreover, its immunomodulatory effects enhance the body's defense mechanisms, improving resistance to infections. Studies have also suggested honey's potential in gastrointestinal health, as it aids in soothing ulcers, improving digestion, and acting as a prebiotic to support gut microbiota. These pharmacological attributes make honey a valuable natural therapeutic agent for various health conditions, further reinforcing its significance in both traditional and modern medical applications.(6)

1.4 Honey as a Natural Anti-Inflammatory Agent

Honey has been widely recognized for its natural anti-inflammatory properties, making it an effective remedy for various inflammatory conditions. The presence of bioactive compounds such as flavonoids, phenolic acids, and other antioxidants helps modulate the inflammatory response by reducing oxidative stress and inhibiting the release of pro-inflammatory cytokines. Honey exerts its anti-inflammatory effects by downregulating inflammatory pathways, including nuclear factor-kappa B (NF- κ B) and cyclooxygenase-2 (COX-2), which play a significant role in chronic

inflammation. Additionally, its ability to suppress the activity of inflammatory mediators such as tumor necrosis factor-alpha (TNF- α) and interleukins (IL-1 β , IL-6) further supports its role as a natural anti-inflammatory agent. Studies have shown that honey can effectively reduce swelling, pain, and redness associated with inflammatory conditions, making it a valuable treatment for ailments such as arthritis, burns, and gastrointestinal disorders. Furthermore, its antioxidant-rich composition helps neutralize free radicals, preventing tissue damage and promoting overall health. These properties position honey as a promising alternative to synthetic anti-inflammatory drugs, offering a natural and safer option for managing inflammation-related diseases.(7)

1.5 Role of Honey in Wound Healing and Tissue Regeneration

Honey has been extensively used in traditional and modern medicine for wound healing and tissue regeneration. Its unique combination of antimicrobial, anti-inflammatory, and antioxidant properties makes it an effective natural dressing for wounds, burns, and ulcers. The high sugar content of honey creates an osmotic effect that draws moisture from the wound, inhibiting microbial growth and promoting a clean healing environment. Additionally, the enzymatic production of hydrogen peroxide in some honeys provides antibacterial activity, preventing infections and enhancing tissue repair.(8) Honey also stimulates fibroblast proliferation and collagen synthesis, crucial steps in wound healing and tissue regeneration. Furthermore, its ability to promote angiogenesis, the formation of new blood vessels, accelerates wound closure and enhances tissue repair. Clinical studies have demonstrated that honey-based wound dressings reduce healing time, minimize scarring, and improve overall wound outcomes. Given its natural efficacy, honey is increasingly being incorporated into wound care products and medical treatments, providing a holistic and bioactive approach to healing injuries and promoting skin regeneration.(9)

1.6 Impact of Botanical Origin on Honey's Therapeutic Potential

The therapeutic properties of honey are significantly influenced by its botanical origin, as different plant sources contribute to variations in its bioactive composition. The type of nectar collected by bees affects the concentration of flavonoids, phenolic

acids, enzymes, and other beneficial compounds, which ultimately determine the honey's anti-inflammatory, antimicrobial, and wound healing capabilities(11). For example, *Manuka* honey, derived from the *Leptospermum scoparium* plant, is known for its high methylglyoxal (MGO) content, making it particularly potent against bacterial infections. Similarly, *Eucalyptus* and *Melaleuca* honeys exhibit strong antimicrobial and anti-inflammatory effects due to their high flavonoid and phenolic acid concentrations. Floral source variations also impact the antioxidant capacity of honey, influencing its effectiveness in reducing oxidative stress and promoting healing. Understanding the relationship between botanical origin and honey's medicinal properties is essential for optimizing its use in therapeutic applications. Standardization of honey based on its floral source can enhance its reliability in medical treatments, ensuring consistent quality and efficacy in wound care, inflammation management, and other health-related applications.(12)

1.7 Antioxidant and Antimicrobial Properties of Honey

Honey is a rich source of antioxidants and natural antimicrobial agents, making it a valuable functional food with significant health benefits. The antioxidant activity of honey is primarily attributed to its high content of flavonoids, phenolic acids, ascorbic acid, and enzymatic compounds such as glucose oxidase. These antioxidants help neutralize free radicals, reducing oxidative stress and preventing cellular damage that can lead to chronic diseases. The presence of these bioactive compounds makes honey effective in protecting against oxidative stress-related conditions, including cardiovascular diseases, neurodegenerative disorders, and aging-related complications.

In addition to its antioxidant properties, honey exhibits strong antimicrobial activity against a broad spectrum of bacteria, fungi, and viruses. Its antimicrobial effects are primarily due to its low pH, high sugar concentration, hydrogen peroxide production, and the presence of specific bioactive compounds such as methylglyoxal (MGO) in *Manuka* honey. The osmotic effect of honey draws moisture away from microbial cells, inhibiting their growth, while its enzymatic production of hydrogen peroxide further contributes to bacterial destruction. Several studies have shown that honey is effective against antibiotic-resistant bacteria, such as

Staphylococcus aureus and *Pseudomonas aeruginosa*, making it a promising natural alternative in wound care and infection management. Due to these potent properties, honey has been widely used in traditional medicine for treating wounds, burns, ulcers, and respiratory infections, and it continues to be an area of interest in modern pharmaceutical research.(13)

1.8 Flavonoids and Phenolic Compounds in Honey: Their Role in Healing

Flavonoids and phenolic compounds are the key bioactive constituents of honey that contribute to its therapeutic effects, particularly in anti-inflammatory, antimicrobial, and wound-healing applications. Flavonoids such as quercetin, kaempferol, apigenin, and luteolin exhibit potent antioxidant properties, helping to reduce oxidative damage and support tissue repair. These compounds play a crucial role in modulating inflammatory responses by inhibiting the production of pro-inflammatory cytokines and reducing the activity of inflammatory enzymes such as cyclooxygenase (COX) and lipoxygenase (LOX). This anti-inflammatory action makes honey effective in soothing irritated tissues and accelerating the healing process.(14)

Phenolic acids, including gallic acid, caffeic acid, and ferulic acid, contribute to honey's antimicrobial and wound-healing properties by promoting collagen synthesis and enhancing cellular regeneration. These compounds stimulate fibroblast activity, essential for tissue repair, and encourage angiogenesis, improving blood circulation to the wounded area. Studies have demonstrated that honeys rich in flavonoids and phenolic acids show superior healing effects, especially in treating burns, diabetic ulcers, and surgical wounds. Additionally, their antimicrobial properties inhibit bacterial colonization in wounds, preventing infections and complications. The concentration and composition of flavonoids and phenolic compounds vary depending on the floral source of honey, highlighting the importance of selecting honey types with the highest therapeutic potential for medical applications.(15)

CONCLUSION

Honey has long been recognized for its medicinal properties, particularly in anti-inflammatory and wound-healing applications. Its rich composition of bioactive compounds, including flavonoids, phenolic acids, and enzymatic antioxidants,

contributes to its strong pharmacological effects. The anti-inflammatory properties of honey help reduce oxidative stress, inhibit pro-inflammatory mediators, and accelerate tissue regeneration, making it an effective natural remedy for various inflammatory conditions. Additionally, its antimicrobial activity, influenced by factors such as pH, osmolarity, hydrogen peroxide production, and specific botanical compounds like methylglyoxal (MGO), makes honey a potent agent against bacterial infections, including antibiotic-resistant strains.

The effectiveness of honey in wound healing is well-documented, as it promotes collagen synthesis, angiogenesis, and epithelialization, facilitating faster tissue repair and minimizing scarring. Furthermore, the therapeutic potential of honey is significantly influenced by its botanical origin, which determines its bioactive composition and efficacy. Understanding these variations is essential for optimizing honey's medical applications and ensuring consistency in its therapeutic benefits.

Overall, honey represents a promising natural alternative to synthetic drugs for inflammation management and wound healing. Its bioactive potential supports its integration into modern pharmaceutical and healthcare applications, reinforcing its role as a valuable functional food and medicinal agent. Further research and clinical studies are necessary to standardize its use and unlock its full therapeutic potential for diverse medical conditions.

REFERENCES:

1. Al-Waili N, Salom K, Al-Ghamdi A, Ansari MJ. Honey for wound healing, ulcers, and burns; data supporting its use in clinical practice. *ScientificWorldJournal*. 2011;11:766-87.
2. Alvarez-Suarez JM, Giampieri F, Battino M. Honey as a source of dietary antioxidants: structures, bioavailability and evidence of protective effects against human chronic diseases. *Curr Med Chem*. 2013;20(5):621-38.
3. Bogdanov S, Jurendic T, Sieber R, Gallmann P. Honey for nutrition and health: a review. *J Am Coll Nutr*. 2008;27(6):677-89.
4. Boukraâ L, Sulaiman SA. Rediscovering the antibiotics of the hive. *Recent Pat Antiinfect Drug Discov*. 2009;4(3):206-13.

5. Eteraf-Oskouei T, Najafi M. Traditional and modern uses of natural honey in human diseases: a review. *Iran J Basic Med Sci.* 2013;16(6):731-42.
6. Ghashm AA, Othman NH, Khattak MN, Ismail NM, Saini R. Antiproliferative effect of tualang honey on oral squamous cell carcinoma and normal oral cells: a comparative in vitro study. *BMC Complement Altern Med.* 2010;10:49.
7. González-Burgos E, Gómez-Serranillos MP. Terpene compounds in nature: a review of their potential antioxidant activity. *Curr Med Chem.* 2012;19(5):5319-41.
8. Kassim M, Achoui M, Mustafa MR, Mohd MA, Yusoff KM. Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity. *Nutr Res.* 2010;30(9):650-9.
9. Kwakman PH, Zaaij SA. Antibacterial components of honey. *IUBMB Life.* 2012;64(1):48-55.
10. Mandal MD, Mandal S. Honey: its medicinal property and antibacterial activity. *Asian Pac J Trop Biomed.* 2011;1(2):154-60.
11. Molan PC. The evidence supporting the use of honey as a wound dressing. *Int J Low Extrem Wounds.* 2006;5(1):40-54.
12. Molan PC. Potential of honey in the treatment of wounds and burns. *Am J Clin Dermatol.* 2001;2(1):13-9.
13. Pappas E. The anti-inflammatory effects of natural honey: a review of recent research. *J Biomed Res.* 2015;29(3):64-71.
14. Scepankova H, Švarc-Gajić J, Cvjetanović A, Đurović S, Radojković M, Vasić V, et al. Antioxidant and antimicrobial properties of different floral honey types. *Food Chem.* 2017;234:62-8.
15. Yaghoobi R, Kazerouni A, Kazerouni O. Evidence for clinical use of honey in wound healing as an anti-bacterial, anti-inflammatory antioxidant. *Jundishapur J Nat Pharm Prod.* 2013;8(3):100-4.
