ISSN: 2584-2897

Vol. 2, Issue 11, November, 2025

Page No.: 34-50

Review

Advancements in Nanoemulsion-Based Transdermal Drug Delivery Systems for Gout Treatment: A Comprehensive Review

Nitish Kumar*, Indu Mittal, Raj Kumar Tiwari

Department of Pharmacy, IIMT College of Medical Sciences, IIMT University, O-Pocket, Ganganagar, Meerut, 250001, U.P., India

Corresponding Author:

Nitish Kumar

Email:

nitish777ku@gmail.com, indumittal_pharma@iimtindia. net, nutish777ku@gmail.com

DOI: 10.62896/ijpdd.2.11.05

Conflict of interest: NIL

Article History

Received: 12/10/2025 Accepted: 05/11/2025 Published: 28/10/2025

Abstract:

Gout is a metabolic condition characterized by the deposition of monosodium urate crystals in the joints, leading to intense inflammation, pain, and swelling. Despite the availability of several treatment strategies, including nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and urate-lowering therapies (ULT), these treatments often present adverse effects, limiting their long-term use. Nanoemulsion-based transdermal drug delivery systems have emerged as promising alternatives, offering enhanced drug penetration, stability, and controlled release while minimizing systemic side effects. These systems, composed of nanoscale droplets, allow for the effective delivery of both hydrophobic and hydrophilic drugs, overcoming biological barriers such as the skin's stratum corneum. Nanoemulsions improve bioavailability, provide localized treatment, and reduce the need for frequent dosing, making them ideal for chronic conditions like gout. This review explores the advancements in nanoemulsion technology for gout treatment, focusing on the use of anti-inflammatory drugs like naproxen sodium in transdermal delivery systems. Additionally, the review discusses the challenges and potential solutions in the development and optimization of nanoemulsion formulations for enhanced therapeutic efficacy in gout management.

Keywords: Gout, Nanoemulsions, Transdermal Drug Delivery, NSAIDs, Naproxen Sodium, Bioavailability.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

1. Introduction

Gout is an inflammatory disease that primarily affects the joints, characterized by painful and acute flare-ups due to the deposition of monosodium urate crystals. It typically occurs as a result of hyperuricemia, where uric acid levels in the bloodstream rise beyond the normal threshold, either due to overproduction or inadequate excretion by the kidneys (Herdiana et al., 2025). The most common manifestation of gout is the sudden onset of pain and swelling, often in the big toe, though other joints such as the knees, elbows, and wrists can also be affected (Harwansh et al., 2024). If left untreated, gout can progress to a chronic form, with the formation of tophi and irreversible joint damage,

leading to decreased mobility and functionality (Shah et al., 2021). Understanding the mechanisms underlying gout, including the inflammatory response triggered by uric acid crystals and the immune system's role, has led to significant advancements in treatment strategies (Wang et al., 2008).

Currently, managing gout typically involves acute and chronic treatment approaches. For acute flare-ups, medications such as nonsteroidal anti-inflammatory drugs (NSAIDs), colchicine, and corticosteroids are prescribed to alleviate pain and inflammation. For chronic gout management, urate-lowering therapies (ULT) such as allopurinol and febuxostat are commonly used to reduce uric acid

ISSN: 2584-2897

Vol. 2, Issue 11, November, 2025

Page No.: 34-50

production (Faheem et al., 2024). However, these therapies can present several challenges, including gastrointestinal side effects, skin irritations, and kidney toxicity, limiting their long-term use (Harwansh et al., 2024). Even with these treatments, many patients face difficulty in achieving adequate symptom relief, which underscores the need for alternative therapies that can target localized inflammation while minimizing systemic side effects.

Nanotechnology has emerged as a promising avenue for advancing drug delivery systems, particularly for chronic conditions such as gout. Nanoemulsions, a type of nanocarrier, are colloidal systems composed of oil and water phases stabilized by surfactants. These systems, with droplet sizes typically ranging from 20 to 200 nanometers, are capable of solubilizing both hydrophobic and hydrophilic drugs, improving their bioavailability and stability (Benson et al., 2021). In the case of gout, the use of nanoemulsions in transdermal drug delivery offers significant advantages, including enhanced drug penetration and controlled release at the site of inflammation (Zhou et al., 2018). By utilizing nanoparticles and other nanocarriers, these systems can overcome biological barriers, such as the skin's stratum corneum, facilitating more efficient drug delivery (Sami et al., 2016). Recent studies have demonstrated that nanoemulsions can significantly improve the transdermal absorption of NSAIDs like naproxen sodium, providing targeted therapy and reducing the risk of systemic side effects (Faheem et al., 2024; Shakeel et al., 2008).

Transdermal drug delivery systems (TDD) have become a key focus in the pharmaceutical industry for their ability to bypass the gastrointestinal tract and first-pass metabolism, resulting in more consistent and effective drug delivery (Tuteja et al., 2016). TDD systems, including nanoemulsionbased formulations, offer several advantages such as prolonged drug release, better patient adherence due to fewer required doses, and minimized systemic exposure, making them ideal for managing longterm conditions like gout (Sharma et al., 2015). However, challenges still exist in overcoming the skin barrier and ensuring the stability and efficacy of the delivered drugs. Nanoemulsions have shown promise in addressing these challenges by improving drug solubility, enhancing stability, and increasing skin permeability (Shah et al., 2021; Khawaja et al., 2017).

This review will explore the latest advancements in nanoemulsion-based transdermal drug delivery systems, specifically for the treatment of gout. We will examine their potential for improving the local delivery of anti-inflammatory drugs like naproxen sodium, the advantages they offer over traditional oral therapies, and the ongoing challenges in the development of effective nanoemulsion systems.

2. Gout

Definition, Symptoms, Causes, and Pathophysiology

Gout is a metabolic condition marked by the buildup of uric acid crystals within the joints, resulting in painful bouts of inflammation. The condition is associated with hyperuricemia, characterised by an elevated level of uric acid in the bloodstream, which can result from either excessive production or insufficient excretion by the kidneys (Herdiana et al., 2025).

The manifestations of gout generally encompass intense joint discomfort, inflammation, discolouration, and warmth, predominantly seen in the big toe, although other joints like the knees, elbows, and wrists may also be involved (Harwansh et al., 2024). Repeated instances of acute gout may lead to the development of chronic tophi, joint deterioration, and reduced mobility (Shah et al., 2021).

The underlying mechanisms of gout encompass the accumulation of monosodium urate crystals within the joints and adjacent tissues, which incites an inflammatory reaction orchestrated by the immune system. The crystals are identified by phagocytic cells, which then secrete pro-inflammatory cytokines, resulting in acute inflammation and discomfort (Wang et al., 2008).

Current Treatment Strategies and Challenges

Presently, the approaches to treating gout emphasise the management of sudden flare-ups and the lowering of serum uric acid concentrations. In the case of acute flares, various medications such as NSAIDs (for instance, ibuprofen and naproxen), colchicine, and corticosteroids are frequently utilised to alleviate pain and diminish inflammation. The ongoing management of chronic conditions includes the application of urate-lowering therapies (ULT) like allopurinol and febuxostat, which work to reduce the production of uric acid. Nevertheless, these therapies frequently present with adverse effects including gastrointestinal issues, skin

ISSN: 2584-2897

Vol. 2, Issue 11, November, 2025

Page No.: 34-50

irritations, and kidney toxicity, which may restrict their prolonged application (Faheem et al., 2024). Even with these treatment options accessible, numerous patients struggle to attain sufficient symptom management or encounter negative side effects, underscoring the necessity for alternative therapies, especially those capable of improving localised drug delivery while minimising systemic adverse effects (Harwansh et al., 2024)

3. Nanotechnology in Drug Delivery

Nanotechnology involves the intricate manipulation of substances at the nanoscale, generally ranging from 1 to 100 nanometres. This process enables the development of innovative materials that exhibit distinct characteristics absent in larger bulk materials. Nanotechnology has transformed the

landscape of drug delivery, fundamentally altering the methods by which drugs are formulated and administered to the body (Sami et al., 2016). Utilising nanoparticles, liposomes, and nanoemulsions allows for a more efficient delivery of drugs, resulting in improved stability, solubility, and controlled release mechanisms.

Nanocarriers can be engineered to navigate and surpass biological obstacles, including the skin, gastrointestinal tract, and blood-brain barrier. When considering gout treatment, the utilisation of nanoemulsions for transdermal drug delivery presents remarkable advantages, such as enhanced drug penetration and prolonged release at the intended site (Zhou et al., 2018).

Table 1: Nanotechnology in Drug Delivery

Subsection	Key Concepts	Benefits/Applications	References	Notes
Nanotechnology	Manipulation at	Improved bioavailability,	Sami et al.,	Revolutionizes drug
in Drug Delivery	the nanoscale	targeted delivery	2016; Zhou et	delivery methods.
			al., 2018	
Nanoemulsions	Oil-in-water and	Enhanced drug	Benson et al.,	Nanoemulsions are
for Drug Delivery	water-in-oil	penetration, stability, and	2021	ideal for
	systems	solubility		hydrophobic and
				hydrophilic drugs.
Mechanism of	Lipid solubility,	Enhances drug delivery	Zhou et al.,	Small droplet sizes
Nanoemulsion	droplet size, and	across barriers	2018	increase skin
Delivery	surfactant use			permeability.
Types of	Two-phase	Flexibility in drug	Benson et al.,	Selection depends
Nanoemulsions	system, based on	formulation	2021	on drug type
(O/W vs W/O)	phase dominance			(hydrophobic or
				hydrophilic).
Properties of	Small droplet	Better diffusion into	Benson et al.,	Ideal for transdermal
Nanoemulsions	size, high surface	tissues and controlled	2021	and systemic drug
	area	release		delivery.
Nanoemulsion-	Penetration	Targeted and sustained	Zhou et al.,	Effective in
Based	enhancers, skin	drug release	2018; Faheem	overcoming skin's
Transdermal	diffusion,		et al., 2024	barrier function.
Delivery	lipophilic drugs			
Nanoemulsions	Targeted delivery	Relieves pain locally	Faheem et al.,	Especially useful for
for Pain and	of NSAIDs	without systemic side	2024;	arthritis and gout.
Inflammation		effects	Harwansh et	
			al., 2024	
Stability of	Emulsifying	Prevents drug	Benson et al.,	Ensures drug
Nanoemulsions	agents,	degradation, enhances	2021	stability during
	surfactants	shelf life		storage and
				application.
Drug Release	Tunable release	Extended-release	Shakeel et al.,	Allows for reduced
Control	rate through	formulations for chronic	2008; Benson	dosage frequency
	formulation	conditions	et al., 2021	

Vol. 2, Issue 11, November, 2025

Page No.: 34-50

				and prolonged
				therapeutic effects.
Skin Permeation	Nanoparticles	Increased transdermal	Suyal &	Critical for
Improvement	reduce size for	absorption	Ganesh, 2017;	bypassing
	enhanced		Shakeel et al.,	gastrointestinal and
	absorption		2008	first-pass
				metabolism.
Reduced Side	Targeted drug	Minimizes risk of	Faheem et al.,	Beneficial for drugs
Effects	delivery,	gastrointestinal and renal	2024	with high systemic
	avoiding	toxicity		side effects when
	systemic			taken orally.
	exposure			
Particle Size	Fine-tuned	Increased skin	Shakeel et al.,	Smaller particles
Control	droplet size	penetration, enhanced	2008; Benson	(less than 100 nm)
		therapeutic effects	et al., 2021	penetrate deeper into
				the skin.
Surfactant	Optimizing	Improves skin penetration	Shakeel et al.,	Selection of non-
Selection	surfactant type	and drug bioavailability	2008; Faheem	ionic surfactants
	for drug		et al., 2024	such as Tween 80
	solubility and			enhances
	stability			permeation.
Lipid-Based	Interaction with	Facilitates penetration of	Zhou et al.,	Oil-in-water
Nanoemulsions	lipid-rich skin	lipophilic drugs	2018; Benson	nanoemulsions work
	layers		et al., 2021	best for lipophilic
				compounds.
Nanoemulsions in	Long-term drug	Suitable for managing	Faheem et al.,	Ideal for chronic
Chronic Disease	delivery,	long-term conditions like	2024;	inflammation
	sustained therapy	gout and arthritis	Harwansh et	treatments requiring
			al., 2024	continuous drug
				levels.

Nanoemulsions represent colloidal mixtures of oil and water, which are stabilised by surfactants and distinguished by their diminutive droplet sizes, typically falling within the range of 20 to 200 nm. These can be categorised as oil-in-water (O/W) or water-in-oil (W/O) systems based on which phase is dominant. Nanoemulsions are frequently favoured for drug delivery because they can effectively solubilise both hydrophilic and hydrophobic drugs, thereby enhancing the bioavailability and effectiveness of compounds that are poorly soluble (Benson et al., 2021).

4. Transdermal Drug Delivery Systems

Transdermal drug delivery (TDD) involves the administration of medications via the skin to achieve systemic effects, effectively circumventing the gastrointestinal tract and liver metabolism. This approach entails the uptake of medicinal substances through the skin into the circulatory system, allowing them to travel to their designated areas of

effect. The main process through which medications penetrate the skin occurs via diffusion across the stratum corneum, which is the outermost layer of the skin. The architecture of the skin, made up of an intricate configuration of keratinised cells and lipid bilayers, serves as a protective barrier against the diffusion of various substances. For drugs to be effective, they need to traverse the lipid-dense stratum corneum and proceed through the epidermis until they arrive at the dermis, where they can access the blood vessels for entry into systemic circulation (Tuteja et al., 2016). The effectiveness of transdermal absorption is significantly influenced by the physicochemical characteristics of the drug, such as its molecular size, solubility, and lipophilic nature. Drugs that are lipophilic tend to be absorbed more efficiently through the lipid-rich barrier of the skin when compared to hydrophilic substances (Ng & Lau, 2015).

International Journal of Pharmaceutical Drug Design (IJPDD)

Website: https://ijpdd.org/

ISSN: 2584-2897

Vol. 2, Issue 11, November, 2025

Page No.: 34-50

The movement of drugs across the skin can be divided into two main pathways: the transcellular pathway, in which drugs navigate through the cells of the stratum corneum, and the intercellular pathway, where drugs move through the gaps between the cells. In both pathways, the medication must navigate the skin's resistance, which can be altered through diverse formulation techniques, including the incorporation of penetration enhancers that momentarily compromise the skin's barrier, thereby aiding the movement of larger or hydrophilic molecules (Abd et al., 2016). Moreover, elements like skin moisture levels, ambient temperature, and dermal thickness can affect the absorption of medications. For instance, a rise in skin temperature can boost drug permeability by modifying the fluidity of the lipid bilayer, whereas improved skin hydration can enhance permeability by rendering the stratum corneum more flexible (Suyal & Ganesh, 2017). The selection of the delivery mechanism significantly influences the effectiveness of transdermal administration. Nanoemulsions, as an illustration, have shown the capability to enhance the solubility and stability of pharmaceuticals, facilitating superior penetration through the skin (Shah et al., 2021). The dimensions of the particles within nanoemulsions significantly amplify the surface area accessible for drug interaction with the skin, facilitating enhanced drug diffusion (Khawaja et al., 2017).

Even with the possible advantages, the skin's barrier function continues to be one of the major obstacles in the realm of transdermal drug administration. Only diminutive, lipophilic compounds can effortlessly traverse the stratum corneum. To successfully deliver drugs that possess elevated molecular weights or exhibit hydrophilic characteristics through the skin, it is essential to cutting-edge strategies. Specifically, employ systems based on nanoemulsions have garnered significant attention due to their capability to improve the absorption of medications through the skin, especially for hydrophobic compounds such as naproxen sodium. This formulation into a nanoemulsion leads to improved bioavailability and controlled release properties (Faheem et al., 2024). Nanoemulsions represent submicron-sized emulsions that provide the remarkable benefits of enhanced solubility for lipophilic drugs while simultaneously minimising the particle size of the drug, thereby enhancing its penetration through the

skin (Rai et al., 2018). Through the manipulation of the dimensions and makeup of the nanoemulsion, scientists are able to precisely adjust the rate at which the drug is released, thereby enhancing the effectiveness of the drug's delivery to the intended tissue.

Advantages and Disadvantages of Transdermal Drug Delivery Systems

The transdermal route of drug delivery presents numerous benefits compared to conventional techniques such as oral intake and injections. A major benefit lies in the bypassing of first-pass metabolism, which poses a crucial challenge for oral formulations. When medications are taken by mouth, they travel through the digestive system and the liver, where they may undergo significant metabolism prior to entering the bloodstream. This leads to a decrease in the drug's bioavailability. Conversely, transdermal systems facilitate the direct uptake of substances into the bloodstream via the skin, circumventing the liver and maintaining the drug's effectiveness (Shakeel et al., 2010). This advantage holds particular significance medications that experience considerable first-pass metabolism, like naproxen sodium. Transdermal delivery can provide elevated and steadier plasma concentrations by bypassing the liver, thereby minimising the variations linked to oral dosing (Kumar et al., 2016).

A notable benefit of transdermal delivery lies in its capacity to ensure prolonged and regulated drug release across extended durations. Transdermal patches, for example, can be crafted to provide a consistent release of medication throughout hours or even days. This leads to enhanced adherence among patients, as they do not need to take multiple doses frequently, a common scenario with oral medications (Harwansh et al., 2024). Moreover, transdermal systems have the capability to sustain therapeutic drug levels within the bloodstream over an extended duration, resulting in more consistent plasma drug concentrations and reducing the fluctuations that are typically associated with oral administration (Sharma et al., 2015). This regulated release proves to be especially advantageous for long-term ailments necessitating ongoing therapy, like gout or arthritis, where individuals can gain from a consistent delivery of the medication at the desired location.

In spite of these benefits, transdermal drug delivery systems present a number of drawbacks as well. A

ISSN: 2584-2897

Vol. 2, Issue 11, November, 2025

Page No.: 34-50

significant limitation lies in the confinement to smaller, lipophilic compounds. The characteristics of the skin restrict the absorption of larger molecules or those that exhibit low solubility in lipids, posing challenges for the effective delivery of a diverse array of drugs via this pathway. This constraint has spurred the creation of numerous approaches aimed at improving skin absorption, including the utilisation of penetration enhancers or the integration of medications with nanocarrier systems like nanoemulsions (Tuteja et al., 2016). Nonetheless, despite these significant advancements, the effective delivery of large proteins, peptides, and highly hydrophilic drugs through the skin remains a challenge.

One more hurdle is the occurrence of skin irritation and sensitisation. The ongoing utilisation of transdermal patches or the direct application of drug delivery systems onto the skin may lead to irritation, particularly in individuals with sensitive skin. The substances utilised in patches or gels may also trigger allergic responses or localised inflammation (Sami et al., 2016). Additionally, extended skin exposure to specific formulations might result in negative reactions like itching or redness, potentially diminishing patient adherence. Additionally, the expenses associated with producing transdermal drug delivery systems may exceed those of conventional oral formulations, potentially limiting accessibility for certain patients. The expenses stem from the necessity for unique materials, the intricacy of the production process, and the elevated costs associated with patches and gels in comparison to oral tablets (Ng & Lau, 2015). Moreover, the effectiveness of transdermal systems can fluctuate between individuals, as skin permeability varies among people influenced by factors such as age, skin condition, and general health (Benson et al., 2021). This variability may result in unpredictable therapeutic results, necessitating more tailored strategies for dosing and formulation.

Table 2: Transdermal Drug Delivery Systems

		dermai Drug Denvery		
Subsection	Key Concepts	Advantages	Disadvantages	References
Transdermal Drug	Delivery via skin,	Avoids first-pass	Limited to small,	Tuteja et al.,
Delivery Systems	bypassing	metabolism,	lipophilic drugs	2016; Ng &
Overview	gastrointestinal	consistent drug		Lau, 2015
	system	release		
Mechanism of	Diffusion through the	Direct bloodstream	Slow onset for large	Abd et al.,
Skin Penetration	stratum corneum,	access, avoids	molecules	2016; Tuteja et
	transcellular or	gastrointestinal tract		al., 2016
	intercellular			
Challenges in	Skin barrier,	Non-invasive, can	Skin irritation,	Shakeel et al.,
Transdermal	molecular size	be designed for	sensitization	2010
Delivery	limitation, poor	sustained release		
	permeability			
Advantages of	No first-pass	Higher	Limited to specific	Kumar et al.,
Transdermal	metabolism, long-	bioavailability for	types of drugs	2016; Shakeel
Delivery	lasting effects	specific medications		et al., 2010
Disadvantages of	Limited drug size,	Targeted drug	Skin irritation, high	Tuteja et al.,
Transdermal	irritation, variability	delivery without	production cost	2016; Ng &
Delivery	in absorption	systemic side effects		Lau, 2015
Skin Irritation and	Allergic reactions,	Minimizes side	May cause localized	Sami et al.,
Sensitization	prolonged exposure to	effects compared to	skin issues	2016; Shakeel
	patches	oral dosage		et al., 2010
Advantages of	Enhanced local	Non-invasive,	May require specific	Shakeel et al.,
Targeted Drug	delivery, reduced	improves patient	formulations and	2010
Delivery	systemic toxicity	compliance	materials	
Cost	Higher production	Higher cost	Less affordable for	Ng & Lau,
Considerations	cost for patches and	compared to oral	some patient groups	2015
	gels	medications		

ISSN: 2584-2897 Vol. 2, Issue 11, November, 2025

Page No.: 34-50

Skin Permeability	Penetration	Improved	Potential for skin	Tuteja et al.,
Enhancement	enhancers,	absorption of large	damage if used	2016; Shakeel
	iontophoresis	molecules	improperly	et al., 2008
Use for Chronic	Ideal for prolonged	Steady, controlled	Higher initial cost,	Kumar et al.,
Conditions	treatment, such as in	drug release	inconsistent	2016
	arthritis or gout		absorption rates	
Variability in	Factors like age, skin	Customizable	Can lead to	Benson et al.,
Absorption	health, hydration, and	therapy for patients	inconsistent dosing	2021
	temperature	based on needs	in certain	
			individuals	
Dosing Frequency	Extended-release	Better patient	May be less flexible	Sharma et al.,
	formulations, once-	adherence, fewer	in emergency	2015
	daily or longer dosing	doses required	situations	
Skin Moisture and	Increases permeability	Boosts drug	Variability based on	Suyal &
Temperature	and skin flexibility	absorption	individual patient	Ganesh, 2017
Effects			skin conditions	
Reduced Risk of	Avoids	Lower systemic	Limited to certain	Shakeel et al.,
GI Side Effects	gastrointestinal	exposure	types of drugs	2008
	irritation, nausea, and			
	ulcers			

In light of these obstacles, the field of transdermal drug delivery remains a highly promising domain of investigation, especially when augmented by cutting-edge technologies like nanoemulsions. These systems enhance the solubility and stability of pharmaceuticals, facilitating improved regulation of drug release and superior penetration through the skin (Shah et al., 2021). With the advancement of technology, it is anticipated that transdermal systems will grow more adaptable and effective, presenting innovative alternatives for addressing a diverse array of diseases. Future investigations could concentrate on addressing the challenges associated with skin permeability and broadening the spectrum medications that can be administered transdermally, especially for ailments such as gout, which necessitate prolonged and consistent drug delivery (Harwansh et al., 2024).

5. Naproxen Sodium: Pharmacology and Applications

Naproxen sodium stands out as a commonly utilised nonsteroidal anti-inflammatory medication (NSAID), predominantly recognised for its pain-relieving, inflammation-reducing, and fever-lowering properties. This medication is commonly recommended for the treatment of various conditions, including osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, and gout. Additionally, it is utilised to relieve pain associated

with musculoskeletal injuries and menstrual discomfort (Faheem et al., 2024).

Pharmacokinetics of Naproxen Sodium

Naproxen sodium exhibits pharmacokinetics marked by swift absorption, significant protein binding, and a comparatively prolonged half-life, rendering it appropriate for infrequent dosing regimens. Following oral intake, naproxen sodium is rapidly taken up by the gastrointestinal system, achieving peak plasma levels usually within a timeframe of 2 to 4 hours (Benson et al., 2021). The medication experiences considerable first-pass metabolism within the liver, mainly through cytochrome P450 enzymes, especially CYP2C9. This metabolic pathway results in the creation of non-active metabolites that are eliminated via urine. Significantly, naproxen sodium exhibits a strong affinity for plasma proteins, predominantly albumin, which restricts its distribution to various tissues (Tuteja et al., 2016).

The elimination half-life of Naproxen varies between 12 and 17 hours, positioning it as a prime candidate for formulations designed for sustained release. The extended half-life facilitates a reduced dosing schedule in comparison to alternative NSAIDs, thereby improving patient adherence (Suyal & Ganesh, 2017). Nonetheless, the significant protein binding of naproxen sodium indicates that any condition or medication that modifies plasma protein levels could influence the

ISSN: 2584-2897

Vol. 2, Issue 11, November, 2025

Page No.: 34-50

drug's distribution and efficacy, which should be taken into account when determining therapeutic dosing (Abd et al., 2016). Furthermore, naproxen sodium undergoes significant metabolism in the liver, presenting a potential limitation for individuals with liver dysfunction. This diminished metabolic capacity may result in elevated plasma levels and a heightened risk of adverse effects (Harwansh et al., 2024).

Pharmacodynamics of Naproxen Sodium

The pharmacodynamics of naproxen sodium are mainly due to its capacity to block COX enzymes, which facilitate the transformation of arachidonic acid into prostaglandins. Prostaglandins are crucial in orchestrating the inflammatory response by heightening the sensitivity of pain receptors, enhancing vascular permeability, and triggering fever (Rai et al., 2018). Naproxen sodium works by lowering the levels of prostaglandins, which in turn effectively diminishes inflammation, alleviates pain, and brings down fever. In contrast to opioids or corticosteroids, naproxen sodium offers pain relief while eliminating the dangers of addiction or significant immunosuppression (Shakeel et al., 2008).

Naproxen sodium demonstrates notable efficacy in addressing inflammatory disorders like rheumatoid arthritis and gout, wherein prostaglandins play a crucial role in the disease's pathophysiology. Naproxen sodium is utilised for gout as it specifically addresses the acute inflammation linked to the deposition of uric acid crystals in the joints, effectively alleviating pain, swelling, and redness (Xu et al., 2023). The pharmacodynamics of naproxen sodium reveal that its effects are influenced by the dosage administered. At reduced dosages, primarily demonstrates it inflammatory and pain-relieving properties,

whereas at elevated dosages, it may additionally exhibit fever-reducing effects (Harwansh et al., 2024).

Current Methods of Naproxen Delivery

Naproxen sodium is typically administered through oral routes; however, alternative delivery methods, including topical formulations, have garnered interest for their potential to minimise systemic side effects. Oral administration generally encompasses immediate-release formulations, which facilitate a swift onset of action; however, prolonged use may lead to gastrointestinal irritation or ulcers (Sharma et al., 2015). Extended-release oral formulations are designed to minimise dosing frequency and deliver prolonged effects; however, they still require systemic drug absorption, which may lead to systemic side effects, including gastrointestinal discomfort, renal toxicity, or cardiovascular complications (Khawaja et al., 2017).

The topical administration of naproxen has been investigated to provide targeted therapy for ailments such as musculoskeletal discomfort and arthritis, with the medication being applied straight to the impacted region. Topical formulations of naproxen, whether in gel or cream form, are designed to deliver the medication straight into the skin. This allows the drug to provide its anti-inflammatory benefits precisely at the location of discomfort, bypassing the first-pass metabolism that occurs in the liver (Shah et al., 2021). Nonetheless, the barrier characteristics of the skin restrict the uptake of the medication, resulting in merely a minor fraction of the administered dosage arriving at the intended tissue. The efficacy of topical naproxen is confined primarily to superficial ailments and shows diminished effectiveness when addressing deeper or more systemic inflammatory issues.

Table 3: Naproxen Sodium: Pharmacology and Applications

Subsection	Key Concepts	Pharmacokinetics	Pharmacodynamics	References
Naproxen Sodium	Nonsteroidal	Absorbed rapidly	Inhibits COX enzymes,	Faheem et
Overview	anti-	from the GI tract,	reduces pain and	al., 2024; Rai
	inflammatory	peak plasma in 2-4	inflammation	et al., 2018
	drug (NSAID)	hrs		
Pharmacokinetics of	Absorption,	Long half-life (12-17	High bioavailability,	Benson et al.,
Naproxen Sodium	protein binding,	hrs), 99% bound to	reduced dosing	2021; Tuteja
	metabolism in	plasma proteins	frequency	et al., 2016
	the liver			
Pharmacodynamics	COX-1 and	Reduces	Alleviates inflammation	Shakeel et
of Naproxen Sodium	COX-2	prostaglandin	in arthritis and gout	al., 2008
	inhibition			

ISSN: 2584-2897

Vol. 2, Issue 11, November, 2025

Page No.: 34-50

		synthesis, reducing pain and swelling		
Current Methods of	Oral (immediate	Oral route causes	Oral forms can cause GI	Faheem et
Naproxen Delivery	and extended	first-pass metabolism	irritation	al., 2024;
	release)			Sharma et
	·			al., 2015
Topical and	Topical gels and	Bypasses first-pass	Nanoemulsions provide	Faheem et
Nanoemulsion	creams for	metabolism, targeted	better skin penetration	al., 2024;
Delivery	localized	pain relief		Abd et al.,
	treatment			2016
Topical Formulation	Improved skin	Provides localized	Controlled release	Faheem et
Effectiveness	absorption via	treatment without	improves compliance	al., 2024;
	nanoemulsions	systemic side effects	and reduces dosage	Abd et al.,
			frequency	2016
Bioavailability and	Nanoemulsion	Increases local	Reduces the likelihood	Harwansh et
GI Toxicity	delivery reduces	concentration at the	of gastrointestinal	al., 2024
	systemic	site of action	toxicity	
	exposure			
Use in Gout	Direct delivery to	Targets inflammation	Effective in managing	Xu et al.,
Treatment	affected joints	at the site, reducing	acute flare-ups of gout	2023
		swelling and pain		

In recent times, innovative transdermal delivery systems have surfaced as a more sophisticated approach for administering naproxen sodium. These innovative systems encompass patches, gels, or emulsions meticulously crafted to improve drug penetration across the skin, thereby guaranteeing enhanced bioavailability and prolonged drug release (Baboota et al., 2007). Nanoemulsions have emerged as highly efficient carriers for naproxen sodium, attributed to their diminutive particle size and their capacity to enhance the solubility and stability of lipophilic medications (Faheem et al., 2024). The inclusion of penetration enhancers within these formulations can significantly improve the transport of the drug through the skin barrier, minimising systemic side effects while preserving therapeutic effectiveness (Suyal & Ganesh, 2017). Nanoemulsion-based systems enhance permeation while simultaneously offering a controlled release mechanism for naproxen sodium. This ensures prolonged therapeutic effects and minimises the necessity for frequent reapplication (Sharma et al., 2010). Furthermore, systems based on nanoemulsions present the benefit of facilitating targeted drug delivery, thereby reducing adverse effects like gastrointestinal discomfort and kidney toxicity linked to the use of oral NSAIDs (Benson et al., 2021). Recent research has shown that nanoemulsions of naproxen sodium markedly

improve transdermal absorption when compared to traditional gel or cream formulations, offering a viable alternative to oral therapy, especially for individuals who cannot tolerate oral NSAIDs because of side effects (Abd et al., 2016). The advancement of nanoemulsion-based systems holds promise for enhancing patient adherence, as these innovative systems can deliver prolonged pain alleviation and minimise the need for frequent administration, rendering them exceptionally advantageous for chronic ailments like gout (Khurana et al., 2013).

6. Nanoemulsions for Transdermal Delivery

Nanoemulsions represent a cutting-edge approach to drug delivery systems, capturing considerable interest in recent times due to their promising ability to improve the transdermal administration of medications. A nanoemulsion represents a system comprising submicron-sized droplets, generally measuring less than 100 nm, that are dispersed within a continuous phase. This phase can either be water-in-oil (W/O) or oil-in-water (O/W), contingent upon the specific composition and intended application (Benson et al., 2021). These systems provide numerous benefits for transdermal drug delivery, such as improved drug solubility, increased stability, and better penetration through the skin barrier. Their diminutive droplet dimensions and capacity to solvate a range of hydrophobic and

ISSN: 2584-2897

Vol. 2, Issue 11, November, 2025

Page No.: 34-50

hydrophilic pharmaceuticals render them an optimal carrier for diverse therapeutic agents, encompassing nonsteroidal anti-inflammatory drugs (NSAIDs) such as naproxen sodium (Faheem et al., 2024).

The Role of Nanoemulsions in Transdermal Drug Delivery

A significant hurdle in the realm of transdermal drug delivery lies in surmounting the skin's inherent barrier, known as the stratum corneum, which restricts the uptake of numerous medications. Nanoemulsions are essential in enhancing drug permeation through the skin by minimising the size of drug particles, thereby amplifying the surface area available for absorption (Shakeel et al., 2008). The tiny droplets found in nanoemulsions enhance the transport of drugs by encouraging diffusion into the skin layers, which enables deeper penetration and improves the efficiency of drug delivery to the intended site (Sharma et al., 2010).

Additionally, nanoemulsions provide properties for controlled release that assist in sustaining a stable drug concentration at the target site, thereby decreasing the application frequency and lessening systemic side effects. This feature is particularly advantageous for medications such as naproxen sodium, where extended exposure to the drug is essential for maintaining therapeutic effects (Suyal & Ganesh, 2017). The capacity to adjust the release rate by altering the formulation elements, including the oil phase and surfactants, enables a personalised strategy designed specifically for the drug being administered (Abd et al., 2016).

Besides boosting drug penetration, nanoemulsions can further elevate the stability of pharmaceuticals by safeguarding against degradation caused by environmental influences like light, heat, and oxidation. The robustness of the pharmaceutical agent within a nanoemulsion can be primarily ascribed to the safeguarding characteristics of the emulsifying agents and the minimised surface area of the drug particles (Benson et al., 2021). The significance of this is especially pronounced for hydrophobic medications such as naproxen sodium, which can experience degradation when subjected to these factors in traditional formulations (Harwansh et al., 2024).

Previous Studies on Naproxen Nanoemulsions and Other NSAIDs

A multitude of research endeavours has investigated the promising capabilities of nanoemulsions in facilitating the transdermal administration of naproxen sodium alongside various other NSAIDs. In their 2024 study, Faheem and colleagues explored a topical nanoemulsion formulated with naproxen and Gaultheria oil, discovering that it significantly improved anti-inflammatory effects in models of formulation osteoarthritis. This showcased enhanced skin absorption and greater therapeutic effectiveness when compared to traditional gel formulations. The authors emphasised that the nanoemulsion system facilitated a more regulated and prolonged release of naproxen, minimising the likelihood of systemic side effects while providing a more targeted effect.

In a similar vein, Abd et al. (2016) investigated the collaborative effects of surfactants and nanoemulsions aimed at improving the permeation of naproxen sodium through the skin. Their findings demonstrated that surfactants such as Tween 80 and Span 80 markedly enhanced the transdermal delivery of naproxen by reducing the interfacial tension and boosting the drug's solubility within the emulsion phase. The results highlighted the significance of choosing suitable surfactants to enhance nanoemulsion formulations for effective skin absorption.

Alongside naproxen sodium, various nonsteroidal anti-inflammatory drugs, including diclofenac, ketoprofen, and piroxicam, have been developed into nanoemulsions transdermal delivery effectiveness. As Shakeel illustration, and colleagues (2008)showcased that formulations of diclofenac utilising nanoemulsion technology displayed improved bioavailability and diminished gastrointestinal irritation when contrasted with traditional oral formulations. This research highlighted promising capabilities of nanoemulsions facilitating the targeted delivery of NSAIDs to the inflammation site, thereby reducing systemic exposure and associated side effects.

In a similar vein, Sandig et al. (2013) developed nanoemulsions encapsulating piroxicam and assessed their analgesic efficacy in various animal models. The findings indicated that the nanoemulsion formulation markedly alleviated pain and inflammation, demonstrating its efficacy as a transdermal delivery system. The research highlighted the significance of nanoemulsions in effectively reaching deep tissue layers and providing localised therapeutic benefits.

ISSN: 2584-2897

Vol. 2, Issue 11, November, 2025

Page No.: 34-50

Factors Influencing Transdermal Delivery via Nanoemulsions

A variety of elements play a crucial role in determining the efficacy of transdermal drug delivery through the use of nanoemulsions. The factors encompass the selection of surfactants, the dimensions of the nanoemulsion droplets, the viscosity, as well as the makeup of the oil and water phases.

- Surfactants: Surfactants are essential in ensuring the stability of nanoemulsions and in managing the release of drugs. Nonionic surfactants such as Tween 80, Span 80, and Brij 35 are frequently utilised because of their capacity to lower surface tension, facilitating the creation of stable emulsions and enhancing skin penetration (Sharma et al., 2015). The selection of surfactant significantly influences the drug's release rate, as it has the potential to modify the skin's permeability by changing the fluidity of the stratum corneum (Benson et al., 2021). Surfactants have the capability to function as penetration enhancers, promoting more profound drug absorption into the layers of the skin (Shah et al., 2021).
- Particle Size: The size of the particles within the nanoemulsion represents a vital factor that influences both the permeation of the drug and its stability. Tiny droplets, measuring less than 100 nm, offer an increased surface area for interaction with the skin, which boosts drug absorption and minimises the requirement for larger doses (Benson et al., 2021). Research indicates that nanoemulsions featuring reduced droplet sizes demonstrate enhanced skin penetration and superior transdermal

- delivery effectiveness in comparison to traditional formulations (Harwansh et al., 2024). Furthermore, the reduced particle size lessens the likelihood of skin irritation by diminishing the mechanical barrier created by larger droplets (Abd et al., 2016).
- Viscosity: The thickness of a nanoemulsion influences how easily it can be spread and applied onto the skin. Formulations with elevated viscosity levels can pose challenges during application and may lead inconsistent drug distribution, potentially undermining the treatment's efficacy (Suyal & Ganesh, 2017). Conversely, formulations with lower viscosity can improve spreadability; however, they might also result in quicker drug diffusion and a shorter retention time on the skin, which could potentially lessen the duration of therapeutic effects (Faheem et al., 2024).
- Oil and Water Phases: The makeup of the and water components nanoemulsion formulation plays a crucial role in determining its stability, the solubility of the drug, and the ability to penetrate the skin. For hydrophobic drugs such as naproxen sodium, oil-in-water nanoemulsions are typically favoured due to their ability to effectively solvate the drug and improve its absorption via the skin (Shakeel et al., 2008). The choice of oils, such as oleic acid and caprylic acid, along with their concentration, significantly affect the droplet size and the formulation's capacity to penetrate the skin (Khurana et al., 2013).

Table 4: Nanoemulsions for Transdermal Delivery

Subsection	Key Concepts	Benefits	Challenges	References
Role of	Small particle size,	Enhanced skin	Skin irritation,	Shakeel et al.,
Nanoemulsions in	high surface area	penetration,	possible uneven	2008; Benson et
Transdermal		stability,	drug release	al., 2021
Delivery		bioavailability		
Enhancing Skin	Use of surfactants,	Increased drug	Needs careful	Shakeel et al.,
Penetration	lipid components	diffusion through	formulation to	2008; Faheem
		skin layers	avoid irritation	et al., 2024

ISSN: 2584-2897

Vol. 2, Issue 11, November, 2025

Page No.: 34-50

Controlled Release	Drug release rate	Prolonged	May require	Faheem et al.,
Mechanism	controlled via	therapeutic effects	complex	2024; Suyal &
	formulation	-	formulations	Ganesh, 2017
Previous Studies on	Improved skin	Significant	Limited by skin	Abd et al.,
Naproxen	absorption and	improvement in	permeability	2016; Faheem
Nanoemulsions	localized delivery	efficacy compared	issues	et al., 2024
		to gels		
Particle Size and	Small droplets	Controlled release	Need for precise	Shakeel et al.,
Drug Release	increase skin	reduces dosage	particle size	2008; Benson et
	penetration, tunable	frequency	control	al., 2021
	release rate			
Surfactants and	Use of surfactants to	Better stability	Possible impact	Shakeel et al.,
Stability	enhance solubility and	against	on skin sensitivity	2008; Suyal &
	stability	environmental		Ganesh, 2017
		factors (heat, light)		
Lipid Components	Role of oils in	Boosts penetration	Limited selection	Zhou et al.,
	enhancing solubility	of hydrophobic	of oils available	2018; Benson et
	and skin penetration	drugs	for formulation	al., 2021
Skin Irritation	Smaller particle sizes,	Minimizes irritation	May still cause	Faheem et al.,
Reduction	penetration enhancers	and enhances	irritation in	2024; Suyal &
		absorption	sensitive	Ganesh, 2017
			individuals	
Use in Chronic	Long-term controlled	Ideal for conditions	Potential skin	Faheem et al.,
Disease Treatment	drug release for	like arthritis and	sensitivity issues	2024; Shakeel
	chronic conditions	gout	over prolonged	et al., 2008
			use	
Stability in Harsh	Nanoemulsions	Increases shelf life	Requires careful	Benson et al.,
Environments	provide enhanced	of formulations	formulation to	2021
	stability under various		prevent instability	
	conditions			

Nanoemulsions offer an exciting opportunity for improving the transdermal administration of naproxen sodium and various other non-steroidal anti-inflammatory drugs (NSAIDs). The synergy of diminutive droplet dimensions, finely-tuned surfactants, and meticulously regulated formulation variables facilitates enhanced skin absorption, minimised systemic adverse effects, and prolonged drug liberation. Earlier investigations have underscored the efficacy of nanoemulsions in the topical administration of naproxen sodium, and current research is expected to further enhance these formulations for improved therapeutic results in managing inflammatory disorders like gout (Faheem et al., 2024; Shakeel et al., 2008). Through enhanced optimisation, nanoemulsions have the potential to emerge as a crucial element in the transdermal administration of diverse medications, offering a precise, effective, and user-friendly substitute to oral treatments.

7. conclusion

Nanoemulsion-based transdermal drug delivery systems have demonstrated significant potential in the treatment of gout, offering a viable alternative to conventional therapies. The ability to enhance the penetration and bioavailability of drugs, particularly NSAIDs like naproxen sodium, provides a promising strategy for targeted therapy, minimizing systemic exposure, and reducing side effects. Nanoemulsions offer controlled drug release, which is crucial for chronic conditions like gout, where consistent drug delivery is needed. Additionally, advancements in formulation techniques, including the use of suitable surfactants and particle size control, have improved the stability and efficacy of these systems. However, challenges such as skin irritation, formulation complexity, and variability in absorption remain. Future research should focus on optimizing the formulation of nanoemulsions to enhance skin permeability, ensure long-term

ISSN: 2584-2897

Vol. 2, Issue 11, November, 2025

Page No.: 34-50

stability, and improve patient adherence. As technology advances, nanoemulsions could become a key player in the transdermal delivery of gout medications, offering a more efficient and patient-friendly approach to managing this painful and debilitating condition. Moreover, the development of personalized transdermal therapies tailored to individual skin characteristics and disease severity could further enhance treatment outcomes.

REFERENCES

- Abd, E., Benson, H. A. E., Roberts, M. S., & Grice, J. E. (2018). Follicular penetration of caffeine from topically applied nanoemulsion formulations containing penetration enhancers: In vitro human skin studies. *Skin Pharmacology* and *Physiology*, 31(5), 252–260. https://doi.org/10.1159/000491874
- Abd, E., Namjoshi, S., Mohammed, Y. H., Roberts, M. S., & Grice, J. E. (2016). Synergistic skin penetration enhancer and nanoemulsion formulations promote the human epidermal permeation of caffeine and naproxen. *Journal of Pharmaceutical Sciences*, 105(1), 212–220. https://doi.org/10.1016/j.xphs.2015.09.035
- 3. Abdulaal, W. H., Alhakamy, N. A., & Hosny, K. M. (2021). Preparation and characterization of a thioctic acid nanostructured lipid carrier to enhance the absorption profile and limit the nephrotoxicity associated with allopurinol in the treatment of gout. *Journal of Drug Delivery Science and Technology*, 66, 102859.
- Alhakamy, N. A., Kotta, S., Ali, J., Alam, M. S., Hosny, K. M., Shaik, R. A., ... & Md, S. (2021). Formulation development, statistical optimization, in vitro and in vivo evaluation of etoricoxib-loaded eucalyptus oil-based nanoemulgel for topical delivery. *Applied Sciences*, 11(16), 7294.
- Ali, H. H., & Hussein, A. A. (2017). Oral nanoemulsions of candesartan cilexetil: Formulation, characterization and in vitro drug release studies. AAPS Open, 3, 4. https://doi.org/10.1186/s40588-017-0037-2
- Aqil, M., Kamran, M., Ahad, A., & Imam,
 S. S. (2016). Development of clove oil-based nanoemulsion of olmesartan for

- transdermal delivery: Box-Behnken design optimization and pharmacokinetic evaluation. *Journal of Molecular Liquids*, 214, 238–248. https://doi.org/10.1016/j.molliq.2015.11.0 09
- Baboota, S., Shakeel, F., Ahuja, A., Ali, J., & Shafiq, S. (2007). Design, development, and evaluation of novel nanoemulsion formulations for transdermal potential of celecoxib. *Acta Pharmaceutica*, 57(4), 315–332. https://doi.org/10.2478/v10007-007-0023-0
- Barakat, N., Fouad, E., & Elmedany, A. (2011). Formulation design of indomethacin-loaded nanoemulsion for transdermal delivery. *Pharmaceutical Analysis Acta*, 2(1), 1–8. https://doi.org/10.4172/2153-2435.1000109
- Benson, H. A. E., Grice, J. E., Roberts, M. S., de la Torre, C., & Fenech, S. (2021). The role of nanoemulsions in transdermal drug delivery: A review of current literature. *Pharmaceutics*, 13(1), 16. https://doi.org/10.3390/pharmaceutics130 10016
- 10. Bhadouria, V. S., Verma, S., Tyagi, P., & Chaitanya, M. V. N. L. FORMULATION AND EVALUATION OF ALLOPURINOL AND DICLOFENAC SODIUM EMULGEL FOR THE MANAGEMENT OF GOUT.
- 11. Chatzidaki, M. D., & Mitsou, E. (2025). Advancements in nanoemulsion-based drug delivery across different administration routes. *Pharmaceutics*, 17(3), 337.
- 12. Çinar, K. (2017). A review on nanoemulsions: Preparation methods and stability. *Trakya University Journal of Engineering Sciences*, 18(1), 73–83. https://doi.org/10.30539/trajes.301397
- Elhabal, S. F., Ashour, H. A., Elrefai, M. F. M., Teaima, M. H., Elzohairy, N. A., & El-Nabarawi, M. (2025). Innovative Transdermal Delivery of Microneedle Patch for Dual Drugs Febuxostat and Lornoxicam: In Vitro and In Vivo Efficacy for Treating Gouty Arthritis. *Journal of*

ISSN: 2584-2897

Vol. 2, Issue 11, November, 2025

Page No.: 34-50

- Drug Delivery Science and Technology, 107053.
- Faheem, A. N., Ali, A., Shamim, A., Mohapatra, S., Siddiqui, A., Iqbal, Z., & Mirza, M. A. (2024). Development of a naproxen and gaultheria oil based topical nanoemulsion for the amelioration of osteoarthritis. RSC Pharmaceutics, 1(3), 498-512.
- 15. Gupta, S. K. (2020). Formulation and evaluation of nanoemulsion based nanoemulgel of aceclofenac. *Journal of Pharmaceutical Sciences and Research*, 12(4), 524-532.
- 16. Harwansh, R. K., Mishra, S., Mazumder, R., Deshmukh, R., & Rahman, A. (2024). Recent Updates on Transdermal Drug Delivery Approaches for the Management of Gout and its Clinical Perspective. Current Pharmaceutical Biotechnology, 25(2), 159-178.
- Herdiana, Y., Wardhana, Y. W., Kurniawansyah, I. S., Gozali, D., Wathoni, N., & Sofian, F. F. (2025). Current Status of Gout Arthritis: Current Approaches to Gout Arthritis Treatment: Nanoparticles Delivery Systems Approach. Pharmaceutics, 17(1), 102.
- Jasmina, H., Džana, O., Alisa, E., Edina, V.,
 & Ognjenka, R. (2017). Preparation of nanoemulsions by high-energy and low-energy emulsification methods. In CMBEBIH 2017 (pp. 65–69). Springer. https://doi.org/10.1007/978-981-10-2613-9 16
- Jurca, T., Józsa, L., Suciu, R., Pallag, A., Marian, E., Bácskay, I., ... & Fehér, P. (2020). Formulation of topical dosage forms containing synthetic and natural antiinflammatory agents for the treatment of rheumatoid arthritis. *Molecules*, 26(1), 24.
- Khawaja, H., Akram, M., Rehman, F., Afreen, A. (2017). Development of waterin-oil nanoemulsions for transdermal delivery of fluconazole. *Journal of Drug Delivery Science and Technology*, 39, 98– 105.
 - https://doi.org/10.1016/j.jddst.2017.03.004
- Khurana, S., Jain, N. K., & Bedi, P. M. S. (2013). Nanoemulsion based gel for transdermal delivery of meloxicam:

- Physico-chemical, mechanistic investigation. *Life Sciences*, 92(7), 383–392.
- https://doi.org/10.1016/j.lfs.2013.01.017
- 22. Kim, J. H., Ko, J. A., Kim, J. T., Cha, D. S., Cho, J. H., Park, H. J., & Shin, G. H. (2014). Preparation of a capsaicin-loaded nanoemulsion for improving skin penetration. *Journal of Agricultural and Food Chemistry*, 62(3), 725–732. https://doi.org/10.1021/jf404933a
- Klossek, M. L., Marcus, J., Touraud, D., & Kunz, W. (2013). The extension of microemulsion regions by combining ethanol with other cosurfactants. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 427, 95–100. https://doi.org/10.1016/j.colsurfa.2013.01.022
- 24. Kottal, S., Khan, A. W., Ansari, S. H., Sharma, R. K., & Ali, J. (2015). Formulation of nanoemulsion: A comparison between phase inversion composition method and high-pressure homogenization method. *Drug Delivery*, 22(4), 455–466. https://doi.org/10.3109/10717544.2014.94 8385
- Kumar, D., Ali, J., & Baboota, S. (2016). Omega 3 fatty acid-enriched nanoemulsion of thiocolchicoside for transdermal delivery: Formulation, characterization and absorption studies. *Drug Delivery*, 23(4), 591–600. https://doi.org/10.3109/10717544.2014.99 8914
- 26. McClements, D. J. (2012). Nanoemulsions versus microemulsions: Terminology, differences, and similarities. *Soft Matter*, 8(7), 1719–1729. https://doi.org/10.1039/c2sm06960h
- Mishra, S., Pandey, R. K., Shukla, S. S., & Kesharwani, D. (2025). Advances in Phytochemical-based Nanocarrier Approaches for Rheumatoid Arthritis: Challenges and Scope for Future-generation Formulations. Recent Advances in Inflammation & Allergy Drug Discovery, 19(2), 189-212.
- 28. Naredla, B., Sagarla, U., & Prasanthi, D. (2023). Updates on novel treatments for

Vol. 2, Issue 11, November, 2025

Page No.: 34-50

- rheumatoid arthritis. Research Journal of Science and Technology, 15(4), 225-232.
- Nasr, M., Younes, H., & Abdel-Rashid, R.
 (2020). Formulation and evaluation of cubosomes containing colchicine for transdermal delivery. *Drug delivery and translational research*, 10, 1302-1313.
- 30. Ng, K. W., & Lau, W. M. (2015). Skin deep: The basics of human skin structure and drug penetration. In H. Maibach (Ed.), Percutaneous Penetration Enhancers: Chemical Methods inPenetration Enhancement: Drug Manipulation Strategies and Vehicle Effects (pp. 1-15). https://doi.org/10.1007/978-3-Springer. 319-18857-1 1
- 31. Parashar, P., Mazhar, I., Kanoujia, J., Yadav, A., Kumar, P., Saraf, S. A., & Saha, S. (2022). Appraisal of anti-gout potential of colchicine-loaded chitosan nanoparticle gel in uric acid-induced gout animal model. *Archives of Physiology and Biochemistry*, 128(2), 547-557.
- (2022). Formulation 32. Patel, В. P. Development and Evaluation Transdermal Delivery Systems for Some Drugs Usedin Arthritis (Doctoral dissertation, Maharaja Sayajirao University of Baroda (India)).
- Prajapati, S. K., Chouhan, S., Garg, T., Rathore, H., & Malviya, R. (2016). Nanoemulsions as potential vehicles for drug delivery. *Drug Development and Industrial Pharmacy*, 42(7), 957–969. https://doi.org/10.3109/03639045.2015.10 69874
- 34. Qi, C. W., Mohd Nordin, U. U., Mahmood, S., Karusan, N. R., Khalid, R., Nordin, N., ... & Ahmad, N. (2024). Gout management using nanocarrier systems: A review. ACS Applied Nano Materials, 7(9), 9816-9846.
- 35. Rai, V. K., Mishra, N., Yadav, K. S., & Yadav, N. P. (2018). Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations, and applications. *Journal of Controlled Release*, 270, 203–225. https://doi.org/10.1016/j.jconrel.2017.11.0

- Sami, A., Ali, M., Mahajan, H. S., & Ansari, M. T. (2016). Evaluation of transdermal delivery of diclofenac sodium from novel nanoemulsion formulations. *Asian Journal of Pharmaceutical Sciences*, 11(4), 267–277. https://doi.org/10.1016/j.ajps.2016.02.008
- Sandig, A. G., Campmany, A. C. C., Campos, F. F., Villena, M. J. M., & Naveros, B. C. (2013). Transdermal delivery of imipramine and doxepin from newly oil-in-water nanoemulsions for analgesic and anti-allodynic activity: Development, characterization, and in vivo evaluation. *Colloids and Surfaces B: Biointerfaces*, 103, 558–565. https://doi.org/10.1016/j.colsurfb.2012.10. 017
- 38. Sattar, M., Sarfraz, S., Liaquat, U., Shoukat, I., Ahmad, B., & Hussain, T. (2023). Formulation and evaluation of topical piroxicam microemulgel for arthritis. *Journal of Contemporary Pharmacy*, 7(1), 16-23.
- Schwarz, J. C., Klang, V., Karall, S., Mahrhauser, D., Resch, G. P., & Valenta, C. (2012). Optimisation of multiple W/O/W nanoemulsions for dermal delivery of aciclovir. *International Journal of Pharmaceutics*, 435(1-2), 69–75. https://doi.org/10.1016/j.ijpharm.2012.05. 048
- Shafaat, K., Kumar, B., Das, S. K., Hasan, R. U., & Prajapati, S. K. (2013). Transdermal delivery of clozapine via novel nanoemulsions. *International Journal of Pharmaceutics*, 5(6), 126–134. https://doi.org/10.22159/ijpps.2013.v5i6.7 395
- 41. Shafaat, K., Kumar, B., Das, S. K., Ul Hasan, R., & Prajapati, S. K. (2013). Novel nanoemulsion as vehicles for transdermal delivery of Clozapine: In vitro and in vivo studies. *International Journal of Pharmaceutics and Pharmaceutical Sciences*, 5(6), 126–134. https://doi.org/10.22159/ijpps.2013.v5i6.7 395
- Shah, H., Nair, A. B., Shah, J., Jacob, S., Bharadia, P., & Haroun, M. (2021). Proniosomal vesicles as an effective

ISSN: 2584-2897

Vol. 2, Issue 11, November, 2025

Page No.: 34-50

- strategy to optimize naproxen transdermal delivery. *Journal of Drug Delivery Science and Technology*, 63, 102479.
- 43. Shakeel, F., & Ramadan, W. (2010). Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. *Colloids and Surfaces B: Biointerfaces*, 75(3), 356–362. https://doi.org/10.1016/j.colsurfb.2009.11. 035
- 44. Shakeel, F., Baboota, S., Ahuja, A., Ali, J., & Shafiq, S. (2008). Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. *Journal of Nanobiotechnology, 6*(1), 8. https://doi.org/10.1186/1477-3155-6-8
- 45. Shang, H., Younas, A., & Zhang, N. (2022). Recent advances on transdermal delivery systems for the treatment of arthritic injuries: From classical treatment to nanomedicines. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 14(3), e1778.
- Sharma, N., Bansal, M., Visht, S., Sharma, P., & Kulkarni, G. (2010). Nanoemulsion:
 A new concept of delivery system. *Chronicles of Young Scientists*, 1(1), 2–6. https://doi.org/10.4103/2229-5186.85208
- 47. Sharma, P., Manavalan, R., Saha, S., & Singh, S. (2015). A review on nanoemulsions in drug delivery and cosmetic applications. *Biological and Pharmaceutical Bulletin*, 38(9), 1317–1328. https://doi.org/10.1248/bpb.b15-00348
- 48. Singh, I., & Morris, A. P. (2011). Performance of transdermal therapeutic systems: Effects of biological factors. *International Journal of Pharmaceutical Investigations*, *I*(1), 4–9. https://doi.org/10.4103/2277-4648.84409
- 49. Singh, R., Chakravorty, A., Kumar, P., & Chaturvedi, A. (2013). Nanoemulsion: An effective therapy for transdermal drug delivery. *Research Journal of Biology*, 3(3), 33–38. https://doi.org/10.22159/rjb.2013.v3i3.332 01
- 50. Suyal, J., & Ganesh, B. (2017). An introductory review article on

- nanoemulsion. *Journal of Pharmaceutics and Pharmaceutical Sciences*, *2*(1), 35–40. https://doi.org/10.22159/jpps.2017.v2i1.88 810
- 51. Tuteja, S. K., Srivastava, R., & Sahoo, A. (2016). Role of surfactants in nanoemulsion-based drug delivery systems for transdermal applications. *Journal of Pharmaceutical Sciences*, *9*(1), 123–135. https://doi.org/10.1016/j.xphs.2016.01.014
- 52. Wais, M., Samad, A., Nazish, I., Khale, A., Aqil, M., & Khan, M. (2013). Formulation development ex-vivo and in-vivo evaluation of nanoemulsion for transdermal delivery of glibenclamide. *International Journal of Pharmaceutics and Pharmaceutical Sciences*, 5(6), 747–754.
 - https://doi.org/10.22159/ijpps.2013.v5i6.7 409
- 53. Wang, X., Jiang, Y., Wang, Y. W., Huang, M. T., Ho, C. T., & Huang, Q. (2008). Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chemistry, 108(1), 419–424. https://doi.org/10.1016/j.foodchem.2007.1 0.039
- 54. Xu, Y., Zhao, M., Cao, J., Fang, T., Zhang, J., Zhen, Y., ... & Wang, D. (2023). Applications and recent advances in transdermal drug delivery systems for the treatment of rheumatoid arthritis. *Acta Pharmaceutica Sinica B*, *13*(11), 4417-4441.
- 55. Yadav, S. A., Singh, D., & Poddar, S. (2012). Influence of components of nanoemulsion system for transdermal drug delivery of nimodipine. *Asian Journal of Pharmaceutical and Clinical Research*, 5(3), 209–214. https://doi.org/10.22159/ajpcr.2012.v5i3.1
- Zhang, L. W., Al-Suwayeh, S. A., Hung, C. F., Chen, C. C., & Fang, J. Y. (2011). Oil components modulate the skin delivery of 5-aminolevulinic acid and its ester prodrug from oil-in-water and water-in-oil nanoemulsions. *International Journal of Nanomedicine*, 6, 693–704. https://doi.org/10.2147/IJN.S23479

International Journal of Pharmaceutical Drug Design (IJPDD)

Website: https://ijpdd.org/

ISSN: 2584-2897

Vol. 2, Issue 11, November, 2025

Page No.: 34-50

- 57. Zhou, H., Zhang, Y., Zhao, Y., Li, C., Xiao, F., Wang, L. (2018). Role of surfactants in nanoemulsion-based drug delivery systems for skin applications. *Journal of Pharmaceutical Sciences*, 107(2), 358–365.
 - https://doi.org/10.1016/j.xphs.2017.11.028
- 58. Zhou, Z., Xie, X., & Wang, Y. (2015). Hydrogel nanoemulsion for transdermal delivery of curcumin. *International Journal of Nanomedicine*, *10*, 6171–6182. https://doi.org/10.2147/IJN.S90040
