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Abstract:

Vaccine safety surveillance plays a pivotal role in ensuring public
confidence and maintaining the integrity of immunization programs
worldwide. With the rapid development and deployment of vaccines,
particularly during global health emergencies, traditional surveillance
methods alone are insufficient to address emerging challenges in
detecting, evaluating, and managing adverse events following
immunization (AEFI). This paper explores integrated approaches to
vaccine safety surveillance, highlighting the principles that govern
effective monitoring, the limitations of conventional systems, and the
need for innovative strategies. It emphasizes the integration of
epidemiological studies, pharmacovigilance systems, big data analytics,
real-world evidence, artificial intelligence, and digital health tools to
enhance early signal detection, causality assessment, and risk
communication. Key challenges such as underreporting, data
harmonization, ethical considerations, and public trust are critically
analyzed. Furthermore, the paper discusses recent innovations including
blockchain-enabled data security, machine learning algorithms for
predictive modeling, and global collaborative platforms that strengthen
vaccine safety monitoring. By adopting a multidimensional and
technology-driven approach, stakeholders can build resilient surveillance
systems that not only safeguard public health but also foster transparency,
trust, and long-term sustainability of immunization programs.
Keywords: Vaccine safety surveillance; Adverse events following
immunization (AEFI); Pharmacovigilance; Big data analytics; Artificial
intelligence; Real-world evidence; Blockchain; Public trust; Global
health; Immunization programs
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Introduction:

immunization (AEFIs) to maintain public trust and

Vaccination remains one of the most effective public
health strategies for preventing infectious diseases
and reducing morbidity and mortality worldwide.
However, like all medical interventions, vaccines
are associated with potential adverse events, which
necessitates the implementation of robust
surveillance systems to ensure vaccine safety post-
licensure. Vaccine safety surveillance systems play
a critical role in identifying, evaluating, and
managing potential adverse events following

inform policy decisions (1).

With increasing globalization and the rapid
deployment of new vaccines—especially in
response to emerging infectious diseases like
COVID-19—information systems have become
integral to vaccine pharmacovigilance. These
systems facilitate the real-time collection, analysis,
and sharing of data on vaccine-related adverse
events, enabling timely risk assessment and
decision-making by health authorities (2). Modern
vaccine surveillance now relies heavily on digital

22

Harshda V. Wagh et. al., 2025, International Journal of Pharmaceutical



health records, national immunization registries,
passive and active reporting systems, and data
integration  tools powered by information
technology.

The shift toward digitized vaccine safety
surveillance has also opened avenues for advanced
data analytics, machine learning, and artificial
intelligence to enhance signal detection and
prediction of rare or unexpected adverse events (3).
Despite technological advancements, the success of
these systems depends on the quality, completeness,
and interoperability of data, as well as coordination
among healthcare providers, regulatory agencies,
and global stakeholders.

Why Vaccine Safety is Different
Vaccine safety differs from traditional drug safety in
several important ways:
1. Vaccines are preventive, not therapeutic
— Unlike most drugs used to treat existing
conditions, vaccines are given to healthy
individuals to prevent disease. This
changes the risk-benefit threshold
significantly; even rare adverse events can
influence public perception and acceptance

4.
2. Mass administration to large
populations Vaccines are often

administered to entire populations,
including children, elderly, and
immunocompromised individuals, which
increases the chance of detecting rare
adverse events due to broader exposure (2).
3. Public trust is critical — Vaccine programs
depend heavily on public confidence. A
single safety concern—whether confirmed
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or not—can lead to widespread vaccine
hesitancy, reduced coverage, and
resurgence of preventable diseases (5).

4. Complex immunological responses —
Vaccines interact with the immune system,
and adverse reactions may involve
complex, sometimes delayed,
immunological mechanisms that are harder
to detect and study compared to
conventional drugs (WHO, 2014).

Why Timely Surveillance is Needed
Timely detection of adverse events following
immunization (AEF]I) is critical for several reasons:

e Early signal detection helps identify
unexpected or rare safety issues soon after
vaccine deployment, allowing for rapid
investigation and corrective action (1).

e Timely data enables health authorities to
distinguish between true adverse reactions
and coincidental medical events, thus
maintaining scientific integrity and public
trust (6).

e Rapid communication of safety findings
is essential during emergency vaccine
rollouts, such as during pandemics, where
the balance of urgency and safety is
especially delicate (7).

e Global data sharing supports consistent
safety ~monitoring across countries,
particularly with new vaccines introduced
under emergency use authorization (EUA)
(Brighton Collaboration, (8).

/\ ) DATA SOURCES
Regional/National Admissions datasets
Hospital F Hospital Provider Network Datasets
s Insurer admission datasets
R
E Emergency
department (ED) Regional/National ED datasets
visits E Hospital Provider Network Datasets
\ Insurer ED datasets
E < Regional/National primary care datasets
Gunersl pactios Insurer/Payer datasets
consultations
R
E
| Telephone help line service datasets
eHealth datasets
Telehealth or eHealth advice N
T
C
Y Solicited surveillance
Y Social media e.g., Twitter, Reddit
Self care in community News media
v Internet search records

Fig.1. Potential vaccine safety data sources by severity of presentation. (9)
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Step Goal Method Outcome
Signal Detection Find potential safety Data mining, automated | Potential signal flagged
concerns alerts

Confirm true and
relevant signals

Signal Validation

Clinical review,
plausibility check

Signal prioritized or
dismissed

Signal Investigation Evaluate causality and

risk impact

Epidemiology, expert
review

Risk assessed, action
decided

Spurious reports

With vaccine hesitancy becoming a significant
global health concern, the circulation of spurious
reports—particularly on social media—regarding
deaths or adverse following
vaccination has increased markedly (12). Even a

serious events
single unverified or misleading report can rapidly
erode public trust, fueling skepticism toward
vaccines and undermining immunization efforts.
Moreover, such reports can lead to amplification
through reposts or echo reporting, potentially
triggering false safety sigmals in surveillance
systems that are designed to detect rare but true
adverse events (14).

The rise of political polarization across various
nations has coincided with a growing tendency for
politicians—including
parties—to  express
publicly. These politically charged messages are
often disseminated through social media, where
they gain significant visibility and traction. Such
platforms amplify these views rapidly, contributing
to misinformation ecosystems that challenge
public health messaging and erode trust in
vaccination efforts (15,16,17).

from mainstream
sentiments

those
anti-vaccine

Healthy recipients
Vaccination programs
individuals, which

raises

(10), (11).

primarily target healthy
the threshold for

acceptable risk and necessitates a more stringent
demonstration of safety. This is especially true for
vulnerable subgroups who are often excluded from
pre-licensure clinical trials—such as pregnant
women, immunocompromised individuals, those
with chronic illnesses, and the frail elderly. Evidence
suggests that pregnant women exhibit more
vaccine hesitancy compared to when they are not

pregnant, largely driven by concerns over safety for
both themselves and their unborn children (18).

However, routine pharmacovigilance systems are
poorly equipped to address these concerns. Many

lack mechanisms to

systematically identify

pregnancy status or to link maternal vaccination
with neonatal outcomes, making it difficult to
conduct meaningful post-marketing surveillance in
this group. Similarly, the immunocompromised and
elderly with frailty are not easily traceable through
existing databases, requiring tailored studies and
specialized registries to assess vaccine safety
outcomes with the necessary granularity. (19).
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Fig.2. Framework for the immunization safety surveillance: the circle size indicates the number of safety signals
or concerns. The more the unresolved vaccine safety concerns, the more likely vaccine hesitation or refusal would
occur. The goal is to achieve maximum vaccine safety, in order to reduce phobias and increase acceptance in
vaccination. WHO: World Health Organization; O/E: observed over expected. (59).

Spontaneous Surveillance and the Role of
Background Rates in Vaccine Safety

Spontaneous (or passive) surveillance constitutes
the foundation of vaccine pharmacovigilance in
most countries and underlies international systems
coordinated by organizations such as the WHO.
These systems depend primarily on voluntary
reporting of adverse events following immunization
(AEFI) by healthcare providers, although in some
jurisdictions, community members and patients may
also contribute.

A major strength of passive surveillance lies in its
broad population coverage, allowing potential
adverse events to be captured across diverse
demographics. However, under-reporting remains a
persistent challenge, including for serious adverse
events. While several countries have instituted
mandatory reporting requirements for healthcare
professionals, evidence suggesting this significantly
improves reporting completeness is limited.
Contributing factors to under-reporting are varied
and often reflect local health system constraints or
provider perceptions (20).

Some systems restrict reporting to licensed
providers, yet emerging evidence indicates that
patients and consumers are equally likely to report
serious AEFI when given the opportunity. The
expansion of online reporting tools has further
increased accessibility, and several national
programs now offer public-facing platforms where
de-identified safety reports can be searched and
reviewed (21,22).

At the international level, national regulatory
authorities (NRAs) contribute to VigiBase, the
global vaccine safety database maintained by the
Uppsala Monitoring Centre in Sweden. This
platform enables both national agencies and WHO
to analyze aggregated global data. Nonetheless,
VigiBase reflects biases from its largest contributors,
such as the U.S. Vaccine Adverse Event Reporting
System (VAERS) and Europe’s EudraVigilance,
potentially  underrepresenting vaccines used
primarily in low- and middle-income countries.

To address such disparities and enhance global
vaccine safety monitoring, initiatives like the Global
Vaccine Data Network (GVDN) have emerged.
These collaborative networks aim to integrate and
analyze data across both high- and low-resource
settings. For instance, GVDN has been involved in
large-scale COVID-19 vaccine safety studies
supported by the U.S. CDC, focusing on adverse
events of special interest (AESI) through data
linkage efforts across diverse populations.
Importantly, not all AEFI are caused by vaccines.
Some adverse health events occur coincidentally
following immunization, and distinguishing these
from genuine safety signals requires comparison
with age- and sex-adjusted background incidence
rates. These background rates are typically derived
from hospital, outpatient, and emergency care
records and serve as a baseline to evaluate whether
observed event rates post-vaccination deviate from
expected norms (24).

Spontaneous surveillance systems are
fundamentally hypothesis-generating tools, and
suspected safety signals identified through these
means usually require validation through active
surveillance or dedicated epidemiological studies.
Over the past decade, spontaneous data analysis has
been increasingly enhanced through automated
statistical tools such as disproportionality analysis,
Bayesian inference, and the Maximized Sequential
Probability Ratio Test (MaxSPRT), which can
expedite signal detection for predefined AEFI types.
Additional refinements, like time-to-onset (TTO)
analyses, provide complementary insights and help
reduce false-positive signals (24).

The COVID-19 pandemic significantly increased
the global volume of vaccine safety reports, placing
immense pressure on pharmacovigilance systems.
Upgrades in database infrastructure, real-time
analytics, and visualization tools have been essential
to prevent system overload and maintain analytical
accuracy in an era of mass immunization.
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Type of Description Primary Strengths Limitations Examples
Surveillance Purpose
System
Passive Relies on Signal Broad Under-reporting; VAERS (USA),
(Spontaneous)  unsolicited detection population Reporting bias; VigiBase
Surveillance reports of coverage; Low No denominator (WHO),
adverse events cost; Early data; Cannot EudraVigilance
from healthcare detection  of confirm causality (EU)
providers, rare AEFI
patients, or
manufacturers.
Active Involves Signal Systematic Expensive and Vaccine Safety
Surveillance proactive validation and data collection; resource- Datalink (USA),
follow-up  of risk More complete intensive; AusVaxSafety
vaccine quantification  reporting; Limited coverage (Australia)
recipients  to Enables
monitor AEFIL. incidence
estimation
Sentinel Surveillance in Targeted High data Limited PRISM (USA),
Surveillance selected sites or monitoring quality; Focus generalizability; EU-ADVANCE
cohorts to on priority Not population-
monitor AEFI populations wide
trends and
investigate
signals.
Cohort Event Prospective Risk Captures Requires  high CEM in Africa,
Monitoring collection  of assessment common/rare retention; Data Asia (WHO
(CEM) data on pre- andcausality =~ AEFI; Suitable complexity programs)
identified for LMICs
cohorts  post-
vaccination.
EHR-Linked Uses automated Real-world Real-time; Data VSD  (USA),
Surveillance data from monitoring Large datasets; access/privacy CPRD  (UK),
electronic and analysis Advanced concerns; IT CNODES
records and analytics infrastructure (Canada)
claims. dependent
Social Uses digital Supplement Captures Data reliability MedWatcher,
Media/Digital  tools to monitor traditional public issues; Clinical Twitter, Google
Surveillance vaccine systems perception; confirmation Trends
discussions and Timely lacking
self-reported detection
AEFL
Enhanced Combines Improve Better Still  voluntary; EU  Influenza
Passive spontaneous detection completeness;  Limited Campaigns
Surveillance reports with Increases scalability
(EPS) reminders  or volume
structured
follow-up.
(26 to 35)
Table.1. Vaccine safety surveillance system types and attributes.
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Fig.3. Differences between active attack and passive attack (60).

Syndromic Surveillance in Vaccine

Monitoring

Safety

Syndromic surveillance refers to the analysis of de-
identified, near real-time data—such as clinical
diagnosis codes or proxies—to detect anomalies or
patterns in health events of interest, including
vaccine-related adverse events. These systems have
the capacity to scale widely and operate across
diverse healthcare settings. A well-known example
of syndromic surveillance is the tracking of
influenza activity through internet-based search
query trends, such as those from Google (36).

Recent advancements have demonstrated the
applicability of similar methods for monitoring

adverse events following immunization (AEFI). For
instance, historical safety signal data related to
influenza vaccines have been successfully analyzed
using call center records and general practice
consultations post-vaccination (37,38). Machine
learning approaches are increasingly being applied
to automate the monitoring of social media content
to identify posts about AEFI and distinguish them
from unrelated discourse  (39,40).
Additionally, media surveillance systems have been
developed to flag and categorize news reports
involving vaccine safety issues (41).

vaccine
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Data Exchange in Syndromic Surveillance
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Fig.5. Here is a brief summary of the process of syndromic surveillance for California. (62).

These systems can potentially monitor a spectrum of
healthcare  engagement—from casual online
searches to hospital admissions—enabling early
detection of mild adverse events that may serve as
precursors to more serious outcomes. For example,
increases in reports of fever following pediatric
immunizations could serve as an early warning for
febrile seizure risks. Such capabilities align with the

Data Linkage in Vaccine Safety Surveillance

role of solicited surveillance in enhancing
traditional pharmacovigilance systems.

Despite their wide reach, high sensitivity, and cost-
effectiveness, syndromic surveillance systems may
lack specificity. Therefore, their optimal use may be
as a complementary tool for signal detection and
characterization within broader vaccine safety
surveillance networks.
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Fig. 4: Multiple types of Real-World Data (RWD) can be linked to facilitate diverse research and commercial

activities. (61).

The integration of large, linked health data systems
has transformed the way potential vaccine safety
concerns—especially rare or unexpected adverse
events following immunization (AEFI)—are
detected and evaluated. These systems typically

connect individual-level vaccination records (from
immunization registries or provider databases) to
various health outcome datasets, including
hospitalizations, emergency visits, primary care
consultations, and death records (42).
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Through techniques such as rapid cycle analysis,
these systems enable the continuous and near real-
time assessment of predefined adverse events of
special interest (AESI). The incorporation of both
vaccinated and unvaccinated individuals in analyses
supports multiple study designs, including the self-
controlled case series (SCCS) approach, where each
person serves as their own control during non-risk
periods (44).

These linkage methods have been instrumental in
identifying true increases in risk—such as Guillain-
Barré¢ syndrome following inactivated influenza
vaccination—as well as in disproving suspected
associations, like spontaneous abortion after flu
vaccines (45,46). Distributed data models are often
used in these networks, where all linkages are done
locally, and only de-identified, aggregated data is
shared centrally. This framework supports national
initiatives like the U.S. Vaccine Safety Datalink
(VSD) and international efforts like the Global
COVID Vaccine Safety Study under the Global
Vaccine Data Network (GVDN) (47).

However, a key limitation of these systems lies in
their reliance on diagnostic classification codes—
most commonly the ICD codes—to define clinical
outcomes. The accuracy of these codes can vary
significantly by country and health condition (48).
In some situations, chart reviews and the use of
standard case definitions are required to confirm
whether a case truly meets criteria for an AESI,
although this level of detail is more feasible in
localized systems than at the national level (49).
Encouragingly, several LMICs such as Vietnam and
Ecuador have successfully implemented vaccine
safety data linkage studies, indicating the growing
feasibility of this approach globally (5.,51). While
privacy concerns are often cited in discussions
around data linkage, public engagement efforts—
including citizen juries and community
consultations—have consistently shown support for
such initiatives when they are used to enhance public
health and vaccine safety (52).

Vaccine Safety Surveillance in Low-Resource
Settings

The original Global Vaccine Safety Blueprint
(GVSB 1.0), introduced in 2012, was designed to
help low- and middle-income countries (LMICs)
develop basic infrastructure for vaccine safety
monitoring and progress toward more robust
systems (53). The updated version, GVSB 2.0,
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builds on this foundation by incorporating a
structured maturity model based on the WHO Global
Benchmarking Tool, which provides a framework
for assessing and improving regulatory capacities
(54).

Despite these efforts, many LMICs still face
significant gaps in safety surveillance capacity. This
is particularly concerning as vaccines with limited
post-marketing safety data are increasingly being
introduced in these regions—often in response to
emerging health threats such as Lassa fever and
Nipah virus (55). The absence of established
surveillance systems in such settings can hinder
timely detection and management of potential safety
signals.

To address these challenges, targeted strategies have
been employed. One common approach involves
strengthening surveillance infrastructure in sentinel
health facilities—Ilocations where adverse events
following immunization (AEFI) are most likely to
be reported. This model was successfully applied
during the rollout of the meningococcal A conjugate
vaccine in countries like Mali and Niger, leading to
improved safety monitoring (56,57).

More recently, initiatives such as the COVID-19-
SENT-[Africa-8] project exemplify regional efforts
to build capacity for active safety surveillance. This
project focuses on hospital-based monitoring of
adverse events of special interest (AESIs) in selected
African countries eligible under the COVAX
Advance Market Commitment framework, helping
ensure real-time data collection and safety
assessment of COVID-19 vaccines 58).

Conclusion

The evolution of vaccine safety surveillance has
been significantly enhanced by advancements in
data systems and digital infrastructure. The global
rollout of COVID-19 vaccines amidst the SARS-
CoV-2 pandemic underscored both the value and the
limitations of current pharmacovigilance strategies.
While spontaneous (passive) surveillance
continues to serve as the backbone of safety
monitoring—especially for identifying rare or
unforeseen adverse events—it is now complemented
by web-based tools, public participation, and real-
time data visualization technologies that have
improved the sensitivity and responsiveness of
signal detection.

Active surveillance systems, including large-scale
data linkage and syndromic approaches, have
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provided deeper insight into vaccine safety by
leveraging real-world evidence. These systems have
proven especially valuable in assessing both
common and less frequent adverse events, offering a
critical foundation for rapid signal validation, risk
assessment, and policy action. Collaborative
networks that span multiple countries and health
systems are increasingly capable of detecting and
confirming associations between vaccines and rare
adverse events, supporting public health decision-
making on a global scale.

In low- and middle-income countries, tailored
strategies—such as sentinel site surveillance—have
enabled targeted safety monitoring, even where
broader infrastructure may be limited. The
combination of traditional and innovative methods,
when adapted to local contexts and supported by
global cooperation, offers a pathway toward
resilient, responsive, and equitable vaccine safety
surveillance.

In conclusion, an integrated and multifaceted
surveillance ecosystem is essential to uphold
vaccine confidence, rapidly identify and investigate
potential safety concerns, and ensure the long-term
success of immunization programs worldwide.
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