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Abstract: 

Background: Our research highlights the In-silico of newer antimalarial 

compounds using molecular docking studies. Objective: The study 

investigates a series of aminohydantoin derivatives from previous 

literature, focusing on their biological activities as antimalarial agents. 

Method: Computational methods such as molecular docking employed to 

gain insights into the interaction between the synthesized compounds and 

the target enzyme PfDHFR-TS. Result: The compounds were showed 

good docking score like moldock score and re-rank score. The finding of 

docking studies shows a typical molecular interaction pattern with lactate 

dehydrogenises. The binding interaction information derived from these 

molecules will be useful in future antimalarial agent design. Conclusion: 

From the docking study, it was observed that ligands bind to the 

electrostatic, hydrophobic clamp formed by the residues Asp 76(B), Tyr 

190(B), Tyr 80(B) and Lys 72(B) which play an important role for 

Plasmodium falciparum inhibition. The binding affinity, grid calculation 

and RMSD percentage lower and upper parameters were calculated. 

Hence, the observable data indicated that, above compounds can serve as 

good leads for further modification and optimization in the of treatment 

malaria. 

Keywords: Aminohydantoin, docking studies, Plasmodium falciparum, 

moldock score. 
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INTRODUCTION 

Malaria is a well-documented and widely recognized 

tropical disease that can have severe consequences, 

including occasional fatalities. A parasite causes it, 

primarily transmitting it through the bites of female 

mosquitoes in the Anopheles genus, known to carry 

the disease [1, 2, 3]. The annual death toll from this 

cause exceeds 445,000 individuals, with a significant 

proportion of fatalities occurring among the younger 

population in Africa [4, 5]. Five types of protozoa, 

Plasmodium falciparum, P. vivax, P. malariae, P. 

ovale, and the recently identified P. knowlesi, cause 

malaria, a disease that mosquitoes transmit [6, 7]. 

The World Health Organization (WHO) World 

Malaria Report of 2019 estimates that there were 228 

million malaria cases globally in 2018. These cases 

resulted in approximately 405,000 deaths, with a 

significant number of fatalities occurring among 

children under the age of 5 [8, 9]. Data from 

available sources indicates that malaria is prevalent in 

over 90 countries. This infectious disease has a 

significant impact on the global population, affecting 

approximately 40% of people worldwide [10, 11]. 

Countries with limited healthcare infrastructure, 

inadequate funding, and insufficient resources for 

prevention and treatment exhibit a significantly 

higher fatality rate of malaria another contributing 

factor could be the prevalence of high levels of 

poverty [12, 13]. The Chinese botanical specimen 

Artemisia annua, also known as sweet wormwood or 

Qinghao, initially yielded artemisinin, a crucial 

compound in the therapeutic intervention of malaria 
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[14, 15, 16]. People typically administer Artemether, 

a commonly employed antimalarial agent, in 

conjunction with another antimalarial drug, 

lumefantrine, resulting in a therapeutic combination 

known as artemether-lumefantrine [17, 18, 19]. 

Furthermore, the bark of the cinchona tree yields 

quinine, a medication and natural compound 

commonly used to treat malaria [20, 21, 22]. 

Regrettably, subsequent to an initial triumph, the 

malaria parasite, particularly Plasmodium falciparum, 

developed resistance to chloroquine [23, 24]. Despite 

the existence of several efficacious antimalarial drugs 

and treatments, the issue of drug resistance persists 

due to the malaria parasite's ability to rapidly evolve 

and adapt [25, 26]. Plasmodium falciparum 

dihydrofolate reductase-thymidylate synthase 

(PfDHFR-TS) was selected as the biological target in 

this study due to its essential role in the parasite's 

folate biosynthesis pathway, which is critical for 

DNA synthesis and cellular replication. PfDHFR-TS 

catalyze the conversion of dihydrofolate to 

tetrahydrofolate, a vital step for the synthesis of 

purines and thymidylate, both of which are necessary 

for DNA replication [27]. This enzyme has long been 

a prime target for antimalarial drugs, including 

pyrimethamine and cycloguanil, due to its central 

role in the parasite's survival [28]. However, the 

widespread emergence of drug-resistant P. 

falciparum strains, caused by mutations in the 

PfDHFR-TS gene, especially in malaria-endemic 

regions, has significantly reduced the efficacy of 

current antifolates, necessitating the discovery of 

novel inhibitors [29].  Recent research has focused on 

new classes of PfDHFR-TS inhibitors, such as 

propargyl-linked antifolates and triazine-based 

molecules, which have demonstrated potential 

against resistant strains of P. falciparum [30, 31]. In 

addition, hybrid molecules combining various 

pharmacophores have been explored to improve 

efficacy against resistant strains [32]. The selection 

of Aminohydantoin derivatives for antimalarial 

research is grounded in their structural similarity to 

both indole and quinoline scaffolds, which are known 

for their antimalarial potency [33]. 

MATERIAL AND METHODS: 

A dataset of 28 Aminohydantoin analogues from a 

single series is acquired. The biological activities of 

these analogues were obtained from previous 

literature Marvin J. Meyers et al. 2013 [34]. This 

study rendered the structures in a two-dimensional 

format using the software Chemdraw Ultra 2D 

Version 8.0. Chemdraw Ultra 3D then transformed 

these two-dimensional representations into three-

dimensional models. The MOPAC algorithm was 

utilized to perform the energy minimization process 

[35]. 

The molecular docking studies were conducted using 

the Surflex Dock module in Molegro virtual docker 

6.0 software. The protein structures of the specified 

PDB entries, 4RAO, and their corresponding 

inhibitors were obtained from the RCSB Protein Data 

Bank [36, 37]. The PDB structures were selected for 

docking studies due to their high-resolution 

crystallographic data (better than 2.5 Å) and 

validated R-free values below 0.25, ensuring 

structural reliability. The selection of 4RAO was also 

based on their inclusion of biologically relevant 

cofactors and inhibitors, which are essential for 

maintaining the proper binding environment [38, 39]. 

NADPH was retained in the structure during the 

docking process because it plays a crucial role in 

maintaining the active site conformation and can 

directly or indirectly interact with the ligand. 

Removing NADPH could lead to an inaccurate 

representation of the binding pocket and affect the 

docking results [40, 41]. Additionally, the pKa values 

of ionizable residues in the protein were computed 

using the PROPKA method at pH 7.4, a pH that is 

representative of physiological conditions. This step 

ensures that the protonation states of amino acid 

residues in the binding site are accurate, which is 

critical for predicting correct interactions during 

docking simulations [42]. The PROPKA method 

allows the prediction of pKa values based on the 

protein structure, taking into account factors such as 

residue environment and hydrogen bonding [43].The 

protein structures were prepared for docking by 

performing energy minimization and charge 

calculations using the AMBER7FF99 force field. All 

ligands and water molecules, except NADPH, were 

removed to avoid interference during docking. Bloat 

values were set to 1.0, and threshold values to 0.5 to 

generate the docking data [44, 45, 46]. To validate 

the docking protocol, re-docking of the co-

crystallized ligands from the PDB entries 4RAO was 

performed. The root-mean-square deviation (RMSD) 

between the re-docked and experimental ligand poses 

was calculated, and an RMSD value below 2 Å was 
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considered acceptable, which is shown in the figure, 

this step ensured that the docking protocol accurately 

predicted ligand binding poses [47, 48]. The final 

docking results were further analyzed through visual 

inspection of the key interactions between the docked 

ligands and the active site residues, confirming the 

preservation of critical hydrogen bonds, hydrophobic 

contacts, and interactions with NADPH. 

EXPERIMENTAL:  

Each ligand was chosen for molecular docking 

analyses to assess its efficacy against malaria. The 

inhibitor protein structure and PDB name were 

acquired from the RCSB protein data bank under the 

PDB identifiers 4RAO, respectively. Molecular 

docking investigations were performed utilizing the 

Surflex Dock module integrated within the Molegro 

virtual docker 6.0 software. MolDock Score and 

MolDock Rerank Score of most active compound to 

that of reference ligand reveals the efficient docking 

interactions of the compound. Asp-76(B), Try-

190(B), Leu-77(B), Thr-45(B), His-38(B), Gly-

39(B), Asp-43(A), Tyr-80(B) and Met-42(B) are the 

major amino acid bindings responsible for biological 

activity. Among the reference ligand and compounds 

1,9,18,19,26,27 and 28 of these amino acids bindings 

are in common which proves that the binding of the 

compounds takes place with the desired amino acids 

in the protein. Molecular docking scores and data 

also correlate and reconfirm the assumption 

regarding the design and development of new 

molecules. 

Table 1: Docking Score of Pdb-4RAO reported compounds 

Comp No. MolDock Score Re-rank Score H-Bond 

01 -131.531 -78.5204 -3.10212 

02 -103.249 -75.8402 -0.384916 

03 -101.301 -68.5639 -0.752536 

04 -113.662 -87.5361 -2.37363 

05 -113.777 -90.9875 -1.40004 

06 -115.143 -94.3147 - 

07 -110.555 -85.7039 -0.00511253 

08 -102.064 -65.8804 -1.97476 

09 -219.323 -161.412 -0.159418 

10 -100.391 -58.364 0.199877 

11 -97.2375 -57.0105 -0.383658 

12 -102.768 -81.1365 - 

13 -100.765 -58.0613 -0.516466 

14 -98.8683 -72.2189 - 

15 -100.875 -61.7457 0.351308 

16 -100.477 -59.5785 -1.33243 

17 -97.9958 -74.6467 -1.65333 

18 -133.322 -60.3441 -0.914538 

19 -131.747 -96.0003 -0.258545 

20 -105.738 -25.2223 -0.0212229 

21 -116.014 -80.3198 -0.244676 

22 -140.886 -106.217 -1.56805 

23 -118.095 -80.9378 -0.452932 

24 -119.617 -78.4913 -2.5 

25 -175.065 -121.149 -1.37088 

26 -178.584 -121.801 -2.41728 

27 -169.936 -133.218 - 

28 -152.656 -94.752 -4.26752 
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Pose analysis of docking of standard drug 

chloroquine and co-crystallized ligand (3L7) explore 

the common amino acid interaction like: Met-42(B), 

Leu-77(B), Thr-45(B), Asp-76(B), Tyr-190(B), His-

38(B), Gly-39(B), Asp-43(A) and Tyr-80(B) which 

are considered to be the active amino acids important 

for binding of ligand on active site. Compound-1 

exhibit common binding interaction like: Met-42(B), 

Asp-76(B), Try-190(B), Leu-77(B), Thr-45(B), Gly-

39(B), His-38(B), Asp-43(A) and Tyr-80(B) to that 

of standard active amino acids.Compound-9 exhibit 

common binding interaction Met-42(B), Asp-76(B), 

His-38(B), Try-190(B), Leu-77(B), Thr-45(B) and 

Tyr-80(B) with amino acids responsible for activity. 

Compound-18 has common binding interactions Met-

42(B), Asp-76(B), Try-190(B), Asp-79(D), His-

38(B) and Asp-43(A) with amino acids. Compound-

19 exhibit binding with essential amino acids like: 

Met-42(B), Asp-76(B), Try-190(B), Thr-45(B), Asp-

76(B), Gly-39(B), His-38(B) and Asp-

43(A).Compound-26 exhibit binding with Asp-76(B), 

Try-190(B), Leu-77(B), Thr-45(B), Gly-39(B), His- 

38(B), Tyr-80(B) and Asp-43(A).Compound-27 

exhibit common amino acid bindings with Asp-

76(B), Try-190(B), Leu-77(B), Thr-45(B), Gly-

39(B), His-38(B) and Asp-43(A). Compound-28 

exhibit common amino acid bindings with Asp-

76(B), Try-190(B), Leu-77(B), Thr-45(B), Gly-

39(B), His-38(B) and Asp-43(A). 

RESULT AND DISCUSSION: 

Computer aided drug designing (CADD) helps the 

researcher to decrease the time and money for drug 

designing projects Molecular docking is very helpful 

in studying the interactions of ligand molecules with 

the target protein before its in vitro synthesis. 

Docking is performed through computer programs 

like Autodock , arguslab and discovery studio 3.1. 

All these molecules were taken from ligand database 

or draw with help of chemical organizer (draw) 

software like chemdraw ultra 2d & 3d in mol or pdb 

format and were stored in a database of MOE in mdb 

format or Pubchem database. All these molecules 

were docked against the same pocket where reference 

drug bound. Molecules were selected from a library 

of molecules and were further assessed by the 

interaction analysis. Finalized molecules showed the 

interactions with the active residue and with other 

residues, docking studies helps to predict the binding 

orientations and interactions of the ligands with the 

target protein 4RAO. These docking experiments 

provided key structural insights into the ligand-

receptor interactions, particularly revealing the 

importance of hydrogen bonding, hydrophobic 

interactions, and electrostatic interactions in the 

binding pocket. For instance, the hydroxyl and 

methoxy substituent were shown to form hydrogen 

bonds with key residues in the binding site, which 

correlated with enhanced activity. 

   

 
Fig 1: Docking of all compounds                         

 
Fig 2: Docking pose of compound 
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Fig 3: Docking pose of compound 9                           

 
Fig 4: Docking pose of compound 18 

CONCLUSION: 

The current study demonstrates the potential of 

Aminohydantoin derivatives as antimalarial agents 

using molecular docking, study concluded that the 

synthesize derivatives of aminohydantoin, showed 

the good docking score and more stable bonding with 

the Plasmodium falciparum so it can be said that, 

these derivatives may be significant against 

Plasmodium falciparum inhibitor. Further study will 

need to be conducted for other properties of drug 

like, absorption metabolism and excretion in human 

body. On the basis of comparison with standard drugs 

like chloroquine and other derivatives selected in this 

study, which have less docking score as compared to 

the standard. It can be concluded that these seven 

derivatives have good RMSD limit so it was made 

virtual derivatives in these molecules could be used 

as promising inhibitor of Plasmodium falciparum to 

therapeutic value for various types of malaria in 

future. 
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