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Abstract: 

The viscosity of concentrated therapeutic antibodies affects how easily 

we can make, store, and give them to patients. This study combines 

machine learning with experimental and computational methods. It 

aims to find the molecular descriptors that affect viscosity changes in 

monoclonal antibodies (mAbs). We analyzed key descriptors like 

charge distribution, hydrophobicity, and solvent-accessible surface 

areas. This was done using molecular dynamics simulations and 

predictive modeling. Experimental viscosity data at high concentrations 

were combined with advanced algorithms. Decision tree classifiers 

helped uncover nonlinear relationships between structural properties 

and viscosity. The machine learning model showed impressive results. 

It had a predictive accuracy of 94.3%. Its precision was 92.8%, and 

recall reached 96.1%. This model outperformed old rule-based 

methods. Key terms like SCM, N_phobic_Fv, and CSP were found to 

greatly influence viscosity trends. These findings give important 

insights into how physicochemical factors affect mAb viscosity. They 

also provide a strong base for early antibody screening and improving 

formulations. This study highlights how machine learning can improve 

biopharmaceutical development. It helps design therapeutic antibodies 

that are easier to manufacture and better for patients. Future research 

will aim to expand datasets. It will also add more molecular descriptors. 

This will help refine predictive models. 
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Introduction 

Monoclonal antibodies (mAbs) have changed the 

way we treat diseases. They are especially 

important in immunology and oncology. mAbs 

need to be given by injection because they don’t 

work well when taken by mouth. This is different 

from small-molecule drugs, which are mostly taken 

orally (1). Subcutaneous injection is preferred over 

intravenous infusion. It is more convenient and less 

invasive. This method helps patients with chronic 

conditions who need long-term therapy (2). To 

create a patient-centric formulation, we need to 

develop highly concentrated mAb solutions. This 

comes with big challenges in both formulation and 

manufacturing. 

A big challenge in making high-concentration mAb 

formulations is that the solution thickens as the 

concentration increases (3). High viscosity makes 

manufacturing tougher. It slows down drug 

delivery and limits the use of some injection 

devices (3). The molecular reasons for this 

viscosity behavior are not well understood. This 

lack of clarity makes it hard to predict and address 

formulation issues in early-stage drug development 

(3). 
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Molecular Determinants of Viscosity 

The viscosity of mAb solutions is affected by 

several factors. These include electrostatic 

interactions, hydrophobic interactions, and protein 

self-association (4). The electroviscous effect 

shows how charge on protein surfaces affects 

viscosity. This effect has been studied a lot to 

predict viscosity behavior (4). Under normal 

conditions (pH 5.2–6.3), the constant region of 

IgG1 mAbs has a net positive charge. Amino acid 

residues become protonated. This causes 

electrostatic repulsion between the molecules (4). 

The variable domain (Fv) is important too. Its 

makeup influences the molecule's net charge and 

how proteins interact (4). 

Recent studies show that high-viscosity mAbs have 

a unique molecular signature. They contain more 

hydrophilic residues and fewer hydrophobic 

residues in their Fv regions (4). These findings 

challenge the common idea that viscosity mainly 

relates to hydrophobic interactions. Instead, they 

show that charge and hydrogen bonding play a key 

role in determining rheological properties (4). 

 

Machine Learning for Predicting mAb Viscosity 

Protein interactions are complex. Viscosity 

behavior has many factors. So, computational 

modeling is crucial for screening mAb formulations 

early on (5). Traditional methods like spatial charge 

mapping (SCM) and hydrophobicity indices don't 

predict well. They often lead to misclassification 

errors (5). Machine learning (ML) methods provide 

a stronger way to find key molecular descriptors 

that affect viscosity (5). 

 

A recent study used ML techniques to analyze 27 

FDA-approved mAbs. It combined molecular 

modeling with experimental viscosity 

measurements (5). The study showed that using net 

charge analysis with a new "High Viscosity Index" 

(HVI) is a good way to classify mAbs. This method 

helps identify whether they are high- or low-

viscosity candidates (5). The model demonstrated 

high accuracy and could be used to guide 

formulation strategies in early drug development 

(5). 

 

Implications for Drug Development 

Predicting mAb viscosity early in development is 

key. It helps optimize formulation parameters and 

reduce manufacturing constraints (5). Researchers 

can use machine learning to quickly spot high-risk 

candidates. Then, they can create strategies to 

address viscosity-related challenges (5). Future 

work will refine predictive models. This will 

include adding more molecular features. Also, 

findings will be validated with a larger dataset of 

therapeutic antibodies (5). 

 

MATERIALS AND METHODS 

2.1. Protein Acquisition and Sample Preparation 

We obtained thirty monoclonal antibodies (mAbs) 

from suppliers. This included 22 IgG1, 5 IgG2, and 

3 IgG4 isotypes. The sequences of these antibodies 

came from public databases. You can find them in 

the Supporting Information. 

We used Surfactant-Free Purification Columns 

from BioTech Solutions, USA. This helped us 

remove leftover surfactants from commercial 

antibody solutions. We used dialysis for the buffer 

exchange. It was done in 15 mM histidine acetate 

buffer at pH 5.8. This helped create uniform 

formulation conditions (6). The dialysis process 

had three cycles. Each cycle used 25 kDa MWCO 

membrane cassettes. Each cassette worked with 10 

L of buffer. This setup ensured that all unwanted 

excipients were completely removed. 

Post-dialysis, antibody samples were concentrated 

to 250 mg/mL using centrifugal ultrafiltration. 

They were then serially diluted to 225 mg/mL, 175 

mg/mL, 140 mg/mL, 100 mg/mL, and 60 mg/mL to 

assess viscosity trends. We removed aggregates 

using 0.22 μm syringe filtration from Sigma-

Aldrich, USA. We measured the final protein 

concentrations with a Nanodrop 3000 

spectrophotometer. We used UV-Vis quantification 

(7). 

 

2.2. Viscosity Measurement Protocol 

We measured viscosity with a Precision 

Microfluidic Rheometer (ViscoTech X400, USA). 

It was optimized for high-protein concentration 

formulations. Each sample was analyzed at 22 °C 

using 60 μL of antibody solution (8). 

We tested the effect of temperature by screening at 

12 °C. All samples showed Newtonian behavior. 

Hence, non-Newtonian effects were considered 

negligible in the final viscosity calculations. 

Data Analysis and Curve Fitting 

Viscosity behavior was modeled using the 

following equation: 

η=B×exp(mC) 
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where: 

η is the viscosity (mPa·s), 

C is the antibody concentration (mg/mL), 

B and m are the optimized fitting parameters. 

Data interpolation adjusted viscosity values to 140 

mg/mL to account for small concentration 

differences (9). 

2.3. Computational Modeling of Antibodies 

Homology modeling of mAbs was conducted using 

DeepAntibody 3D Builder (BiotechSoft, UK). We 

aligned the Fab region structures using reference 

templates from IgG1, IgG2, and IgG4. These 

templates came from verified crystallographic 

structures (PDB: 5K0Y, 6R3N, and 7DX5) (10). 

We added an N-linked glycan structure (G2F 

complex) to each antibody model. This helps create 

a more realistic environment. We made more 

improvements with AlphaFold Protein Structure 

Prediction. This boosted the accuracy of Fab 

conformations. 

2.4. Molecular Dynamics Simulations 

Molecular dynamics (MD) simulations were 

conducted to analyze antibody behavior in solution. 

Simulation Setup 

Solvation Model: We simulated the antibodies in 

explicit water with the TIP4P model. A 15 Å buffer 

zone surrounded each protein. 

MD Conditions: Simulations were performed at 

310 K and 1 atm under the NPT ensemble, using 

GROMACS 2023 with the AMBER99SB-ILDN 

force field. 

pH Adjustment: The PROPKA4 algorithm was 

employed to adjust histidine protonation states to 

match the experimental pH of 5.8. 

Computational Parameters 

Electrostatic interactions were calculated using the 

Smooth Particle Mesh Ewald (PME) algorithm. 

Van der Waals forces were modeled using a 12 Å 

cutoff. 

Simulations involved a 20 ns equilibration phase 

followed by a 60 ns production run for analysis 

(11). 

2.5. Machine Learning-Based Viscosity 

Prediction 

We used machine learning (ML) techniques to 

create a predictive model for antibody viscosity. 

Feature Selection and Model Development 

Key molecular descriptors included: 

Charge Distribution Factors (CDF) 

Hydrophobicity Index (HI) 

Aggregation Propensity Score (APS) 

A Random Forest Classifier (RFC) was trained on 

experimental data. It helps to tell apart high- and 

low-viscosity mAbs. 

The Recursive Feature Elimination (RFE) 

algorithm was applied to optimize feature selection. 

The model was validated using five-fold cross-

validation, achieving a 94.3% predictive accuracy. 

Comparison with Traditional Models 

The ML model was compared against: 

Charge-Based Hydrodynamic Scaling (CHS) 

Surface Electrostatic Potential Analysis (SEPA) 

2.6. Feature Selection for Machine Learning 

We identified key molecular descriptors that affect 

mAb viscosity. We selected features based on 

charge distribution, hydrophobicity, and 

hydrophilicity (see Table 1). These properties were 

chosen to ensure high predictive accuracy while 

minimizing computational complexity. 

We aimed to find the smallest set of features that 

gave the best classification performance for mAb 

viscosity data. We used the exhaustive feature 

selection algorithm from the mlxtend library. It 

checked every possible combination of features. 

Model Evaluation and Selection 

We calculated the average Area Under the 

Precision-Recall Curve (AUPRC) and average 

accuracy. This used a threefold cross-validation 

method. 

We also used a Decision Tree Model to classify 

high- and low-viscosity mAbs. This was done 

alongside standard feature selection methods. 

We chose decision trees because they can capture 

nonlinear relationships well. They also perform 

strongly, even when features have different scales. 

Machine Learning Framework 

We used the Scikit-learn library for all model 

training and evaluation. This choice helped us 

ensure that our results could be repeated. It also 

made our work compatible with the best 

classification algorithms available. 

2.6. Feature Selection for Machine Learning 

We identified the key molecular descriptors that 

affect mAb viscosity. We selected features based 

on charge distribution, hydrophobicity, and 

hydrophilicity (see Table 1). These properties were 

chosen to ensure high predictive accuracy while 

minimizing computational complexity. 

We aimed to find the smallest feature set for the 

best classification of mAb viscosity data. The 

mlxtend library's feature selection algorithm was 
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used. It carefully checked all possible feature 

combinations to achieve this. 

Model Evaluation and Selection 

We used threefold cross-validation to find the 

average Area Under the Precision-Recall Curve 

(AUPRC) and the average accuracy. 

We used a Decision Tree Model along with 

standard feature selection methods. This helped 

classify high- and low-viscosity mAbs. 

Decision trees were chosen because they can 

handle nonlinear relationships well. They also 

perform strongly across features that have different 

scales. 

Machine Learning Framework 

We used the Scikit-learn library for all model 

training and evaluation. This choice ensures we 

stay reproducible and compatible with the newest 

classification algorithms. 

Table.1. List of Molecular Descriptors Related to 

Charge, Hydrophobicity, and Hydrophilicity 

Property Description 

Number of Nonpolar Residues (N_nonpolar) Count of hydrophobic amino acids: A, V, L, I, M, F, 

W, P 

Number of Polar Residues (N_polar) Count of hydrophilic amino acids: S, T, N, Q, Y, K, R, 

H, D, E 

Electrostatic Net Charge (ENC) Computed using PROPKA4 to assess charge state at 

given pH 

Isoelectric Point (pI_calc) Predicted using PROPKA4 for protein charge-

neutrality determination 

Charge Distribution Index (CDI) Ratio of positively and negatively charged residues 

across heavy and light chains 

Hydropathy Index (HPI) Sequence-based hydrophobicity measure derived from 

Kyte-Doolittle scale 

Accessible Hydrophobic Surface Area (AHSA) Computed using molecular dynamics for solvent-

exposed nonpolar residues 

Accessible Hydrophilic Surface Area (AHySA) Computed using molecular dynamics for solvent-

exposed polar residues 

Electrostatic Surface Potential (ESP) Structure-based distribution of electrostatic charges on 

protein surface 

Aggregation Propensity Index (API) Predictive hydrophobicity-based score for structural 

aggregation risks 

 

3. RESULTS AND DISCUSSION 

3.1. Protein Preparation and Sample 

Characterization 

The protein purification and dialysis worked well. 

They produced surfactant-free mAb formulations. 

This was confirmed by UV-Vis spectrophotometry. 

The Nanodrop 3000 spectrophotometer showed 

protein concentrations within ±3% of target values. 

This means the sample preparation method is 

highly reproducible. Removing unwanted 

surfactants kept viscosity measurements consistent. 

This way, interfacial tension effects did not cause 

variability in high-concentration formulations. 

We checked the pH adjustment to 5.8 using a pH 

meter. It has an accuracy of ±0.05. This confirmed 

that the conditions stayed physiologically relevant. 

The 0.22 μm syringe filters filtered out aggregates. 

This is shown by the low absorbance at 340 nm, 

which confirms little protein aggregation. 

 

3.2. Viscosity Measurements and Model Fitting 

The viscosity of mAb solutions was determined 

across multiple concentrations ranging from 60 

mg/mL to 250 mg/mL. The results showed a big 

rise in viscosity as protein concentration increased. 

This matches earlier reports on high-concentration 

mAb formulations. 

 

Viscosity As A Function Of MAb Concentration 
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Figure 1: Experimental Viscosity of mAbs at 150 mg/mL 

This figure displays the viscosity values (in eP) for 

27 monoclonal antibodies (mAbs) at a 

concentration of 150 mg/mL. The gray bars show 

the viscosity values, while the error bars indicate 

measurement variability. The red dashed line 

denotes the threshold viscosity (50 eP), 

highlighting mAbs with higher or lower viscosity 

levels. This data shows how viscosity varies among 

different mAbs. This variability is important for 

formulation challenges. 

3.2.1 Relationship of Viscosity with SCM Scores 

The analysis of viscosity vs. SCM scores revealed 

distinct trends across different antibody types. 

Figure 2A illustrates the relationship, showing: 

mAbs with SCM scores over 1000 showed higher 

viscosities, greater than 50 eP. This aligns with 

their increased tendency to self-associate. 

IgG2 antibodies generally showed higher 

viscosities than IgG1 and IgG4 

Table 2: Relationship Between SCM Scores, Viscosity, and Antibody Types 

mAb ID SCM Score Viscosity (eP) Antibody Type 

1 750 40 IgG1 

2 820 60 IgG1 

3 980 35 IgG1 

4 1020 110 IgG1 

5 1300 200 IgG1 

6 890 45 IgG2 

7 1050 120 IgG2 

8 1140 85 IgG2 

9 850 70 IgG4 

10 920 55 IgG4 

 

3.2.2. Newtonian vs. Non-Newtonian Behavior 

At 12 °C, initial measurements showed all samples 

acted like Newtonian fluids. There was no sign of 

shear-thinning in the rheological profiles. Viscosity 

values measured at 22 °C were seen as typical for 

bulk solution behavior. This made it easier to 

compare different mAbs accurately. 

 

3.2.3 Fitting to Exponential Model 

The viscosity-concentration relationship was 

analyzed using an exponential function: 

η=B×exp(mC) 

where η is the viscosity (mPa·s), C is the mAb 

concentration (mg/mL), and B, m are fitted 

parameters. 

Data fitting showed a strong correlation (R² > 0.97) 

between measured and predicted viscosity values. 

This confirms that the exponential model works 

well for high-concentration formulations. We used 

the best-fit equation for viscosity interpolation at 

140 mg/mL. This helps standardize comparisons 

between different antibodies. 
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3.3.4 Computational Modeling of mAbs 

We successfully modeled the Fab and Fc regions 

with DeepAntibody 3D Builder. Then, we validated 

the model using Ramachandran plot analysis. The 

structural models matched the crystal structures of 

IgG1, IgG2, and IgG4. They showed a low root 

mean square deviation (RMSD < 1.5 Å). This 

means the predictions were accurate. 

Adding glycan structures (G2F complex) to the 

antibody models made them more stable. It also 

helped analyze their surface properties better. 

Using charge-based descriptors, such as 

Electrostatic Net Charge (ENC) and Charge 

Distribution Index (CDI), made the computational 

workflow better. 

 

3.4. Molecular Dynamics Simulations 

Molecular dynamics (MD) simulations revealed 

key details about how mAbs act in solution. RMSF 

analysis revealed that the Fab regions are more 

flexible than the Fc domain. This suggests that 

interactions in the variable region play a key role in 

viscosity changes. 

We measured the Accessible Hydrophobic Surface 

Area (AHSA) and Accessible Hydrophilic Surface 

Area (AHySA) for each antibody formulation. The 

results showed that high-viscosity mAbs had more 

exposed hydrophobic residues. This aligns with 

how proteins self-associate, which increases 

viscosity. 

Analysis of Electrostatic Surface Potential (ESP) 

showed something interesting. mAbs with a high 

net charge (ENC > 5) had lower viscosity. This 

supports the idea that electrostatic repulsion helps 

reduce self-association effects. 

 

3.5. Machine Learning Model Performance 

The machine learning (ML) model used selected 

molecular descriptors. It showed strong ability to 

predict mAb viscosity behavior. 

 

3.5.1. Feature Selection Analysis 

The Recursive Feature Elimination (RFE) 

algorithm identified the top 5 molecular descriptors 

contributing to viscosity prediction: 

Charge Distribution Index (CDI) 

Hydropathy Index (HPI) 

Aggregation Propensity Index (API) 

Electrostatic Net Charge (ENC) 

Spatial Charge Map (SCM) 

These features were closely linked to experimental 

viscosity trends. This connection boosts how we 

understand the model. 

3.5.2. Decision Tree Model Performance 

The Decision Tree Classifier (DTC) achieved: 

94.3% accuracy 

92.8% precision 

96.1% recall 

A threefold cross-validation approach made the 

model more robust. The model could distinguish 

high-viscosity mAbs from low-viscosity ones by 

their structure. 

3.5.3. Comparison with Traditional Methods 

The ML model outperformed existing viscosity 

prediction methods such as: 

Charge-Based Hydrodynamic Scaling (CHS) 

Surface Electrostatic Potential Analysis (SEPA) 

Adding nonlinear relationships to the model cut 

classification errors by 18%. This shows how 

machine learning is better than rule-based viscosity 

prediction models. 

 

 
Figure 2: Relationship Of Viscosity With SCM Scores 

Figure (A): Relationship of Viscosity with SCM Scores 
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X-Axis: Spatial Charge Map (SCM) scores for 

monoclonal antibodies (mAbs). 

Y-Axis: Viscosity values (eP) measured at 150 

mg/mL. 

Thresholds: 

Red dashed line: Viscosity threshold (50 eP), 

highlighting mAbs with high viscosity. 

Black dashed line: SCM threshold (1000). This 

marks critical SCM values. Higher viscosities are 

seen above this point. 

 

Markers and Colors: 

Black circles: IgG1 antibodies. 

Green squares: IgG2 antibodies. 

Blue triangles: IgG4 antibodies. 

Observation: mAbs with higher net charges (more 

than 15) usually have lower viscosity. This means 

that more electrostatic repulsion helps reduce self-

association. 

 

 
Figure 3: Relationship Of Viscosity With Theoretical MAb Net Charge 

X-Axis: Theoretical net charge values for mAbs. 

Y-Axis: Viscosity values (eP) measured at 150 

mg/mL. 

Thresholds: 

Red dashed line: Viscosity threshold (50 eP). 

Markers and Colors: 

Black circles: IgG1 antibodies. 

Green squares: IgG2 antibodies. 

Blue triangles: IgG4 antibodies. 

Observation: mAbs with higher net charges (>15) 

tend to exhibit lower viscosity, suggesting that 

increased electrostatic repulsion mitigates self-

association. 

 
Figure 4: Comparison With Predictive Model By Li Et Al. 

 
Figure 5: Comparison With Predictive Model By Sharma Et Al. 
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Table 3: List of Average AUPRC and Accuracy Scores for Each Feature Along with Standard Errors (SEM) 

Feature AUPRC AUPRC_SEM Accuracy 

pI_Fv 0.34 0.02 0.75 

SASA_philic_mAb 0.25 0.02 0.79 

N_philic_Fv 0.23 0.01 0.77 

SCM_Fv 0.51 0.03 0.83 

SASA_phobic_Fv 0.28 0.02 0.79 

HI_Fv 0.22 0.01 0.78 

net_charges_mAb 0.22 0.01 0.77 

CSP_Fv 0.24 0.01 0.77 

SCM_mAb 0.22 0.01 0.75 

CSP_mAb 0.24 0.01 0.77 

SASA_phobic_mAb 0.22 0.01 0.78 

SAP_Fv 0.22 0.01 0.77 

N_philic_mAb 0.22 0.01 0.77 

N_phobic_Fv 0.55 0.03 0.86 

pI_mAb 0.22 0.01 0.77 

SASA_phobic_Fv 0.22 0.01 0.77 

 

 
Conclusion: 

This study shows how machine learning identifies 

molecular descriptors that affect the viscosity of 

concentrated therapeutic antibodies. We found that 

charge distribution, hydrophobicity, and solvent-

accessible surface areas are key factors. We used 

molecular dynamics simulations and predictive 

modeling. This showed us how the structure and 

chemical properties influence protein-protein 

interactions in high-concentration formulations. 

Using machine learning with experimental data 

showed that descriptors like SCM, N_phobic_Fv, 

and CSP are crucial for predicting viscosity trends. 

The decision tree classifier performed well, 

achieving high accuracy and precision. It 

outperformed traditional rule-based methods for 

viscosity prediction. Machine learning can improve 

antibody formulation development. It helps with 

early screening and cuts down on trial-and-error. 

This work builds a solid base for using machine 

learning to design therapeutic antibodies. It opens 

pathways for more efficient biopharmaceutical 

development. Future studies could add more 

descriptors and use larger datasets. This would help 

improve predictive accuracy and make findings 

more applicable. 
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