Page No.: 91-101

Review

Role of Interleukin-18 Inflammatory Disease

Shadab, Navneet Kaur*, Pawneet Sharma, Nischayjit Singh

College of Pharmacy, RIMT University, Mandi Gobindgarh, Punjab, India-47301

Corresponding Author:

Navneet Kaur

Email: NA

DOI: 10.62896/ijpdd.2.5.10

Conflict of interest: NIL

Article History

Received: 12/04/2025 Accepted: 04/05/2025 Published: 10/05/2025

Abstract:

The family of interleukin (IL)-1 includes IL-18. The fact that both IL-1B and IL-18 need intracellular cysteine proteolytic caspase-1 for any biological activity indicates their intimate relationship. Some autoimmune illnesses are believed to be partially caused by IL-18. Interferon-G (IFN-G) is thought to be elevated in a number of conditions, such as Crohn's disorder, the skin condition, arthritis of the joints, graft vs host illness, lupus erythematosus systemic, and stimulation of macrophages syndrome. Moreover, it appears that IL-18 may be involved in ischemia, which includes acute kidney injury in humans. The role of IL-18 is demonstrated by animal models of hepatitis, graft versus target infection, plaque accumulation, and lupus erythema. Remarkably, inflammatory mediator 18 plays a part in hunger regulation and the ensuing development of obesity. It has been demonstrated that IL-18binding proteins, a natural and selective antagonist of IL-18, in is safe for use in human patients and neutralizes IL-18 activity. Capsase-1 inhibitors, human monoclonal antibodies against IL-18, which permeable IL-18 receptors, as well as anti-IL-18 receptors polyclonal antibodies are further potential treatments for lowering IL-18 activity. **Keywords:** Systemic lupus erythematosus (SLE), dermatitis, rheumatic arthritis (RA), inflammatory bowel disease (IBD), and interleukin 18

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

INTRODUCTION

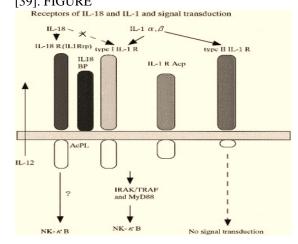
In 1989, interleukin-18, also known as IL-18, is isolated from endotoxins was used for sera of mice treated and was initially identified as an interferongamma-inducing factor. Propionibacterium acnes, which has a predisposition toward activating the reticuloendothelial system, particularly the liver's Kupffer cells, was administered to the mice prior to treatment. Many concluded that IL-12 was this serum factor. The nomenclature was altered to IL-18 when "the interferon-g inducing factor" was molecularly cloned and purified from mice livers in 1995 (1). The profession was shocked to learn that this recently identified cytokine was connected to I, namely IL-1\u00e1. Similar to IL-1 beta, inflammatory mediator 18 begins as an inactive precursor and persists as a cytoplasmic cytokine in the absence of the signal peptide. There is a significant degree of fundamental similarity between the IL-18 and IL-37 precursors in their tertiary structures, and there appears to be a relationship between the two genes based on their intron-exon boundaries. Many papers

have since been published [reviewed in Ref. [2–4)]. The first reference to in vitro inhibition by antibody against native IL-18 or research on IL-18 deficient mouse models to demonstrate its role in inducing inflammation and immunological responses occurred in 1995. However, IL-18's biology is not the similar to IL-1 beta, There are several distinct differences between inflammatory mediator 18 and IL-1 beta. The first is that normal human and mouse blood mononuclear cells as well as hematopoietic cells do not express the IL-1β gene, and there is no proof that the precursor of IL-1β is constitutively present in epithelial tissues. In addition, the peritoneal macrophages along with disease-free mouse spleen possess the IL-18 precursor (5). Nearly all epithelial cells, including keratinocytes, are included in the IL-18 precursor. In this respect, inflammatory mediator 18 is quite similar to IL-1alpha and the IL-33. One of the eleven endogenous mediators within the inflammatory mediator-1 family is interleukin 18. which are used to stimulate the immune system's innate mechanism [6, 7]. Both

Vol. 2, Issue 5, May, 2025

Page No.: 91-101

acquired and innate immunity are triggered by Interleukin-18. B cells, DCs, NK cells, NKT cells, Helper T-Cell even macrophages, along with nonpolarized T cells can be influenced by it to create interferon gamma (IFN-g) when IL-12 is present. Via NK, which is CD4+ NKT cells, it produces types 2 T-helper cells (Th2) cytokines in conjunction with IL-2, as well as committed Th1 cells when IL-12 is not present. IL-4 as its & inflammatory mediator 13 synthesis by basophils & mast cell precursors is based on their connection with IL-3 [8.9]. This surrounding cytokine indicates that IL-18 exhibits pleiotropism. This demonstrates its important pathophysiological role in both health and illness [10]. Due of its influence on immunological responses, including natural and artificial, IL-18 is linked to several inflammatory and autoimmune diseases [11]. Dermatology [12], a form of lupus erythematosus (SLE) [13,14], elevated blood pressure, chronic renal disease [15], those with multiple sclerosis (MS) patients [16,17], along coronavirus disorder 2019 (COVID-19) [18,19] are often associated with higher interleukin-18 concentrations. Caspase-1 levels are also correlated with this parameter [20]. Destructive insulitis and A model involving mice of autoimmune diabetes showed a strong correlation between IL-18 and mRNA, or messenger RNA, expression, most likely as a result of IFN-g release [21,22]. It has been demonstrated that IL-18-/-NOD mice had a decreased interaction with cells from the islet than their NOD wild-type counterparts [23]. The finding that IL18-/-mice in a collagen-induced arthritis model had improved disease outcomes further supports the significance of IL-18 in autoimmune disorders [24]. Additionally, experimental autoimmune myasthenia gravis, also known as (EAMG) [27] and experimental autoimmune brain disease [25,26] do not develop in IL18-/-mice. One of the possible explanations is that pregnant women who experience repeated miscarriages exhibit almost four times greater levels of IL-18 expression, according to gene expression research [28].


Features of interleukin -18

Inflammatory mediator 18 and further associated cytokines:

Prior to its designation as IL-18, this responder was initially termed "IFNg-inducing factor" [29] because it can cause CD3-stimulated cells of Th1 to secrete IFNg in the context of liver toxicity. The definition then became specific after purification using the mouse cells of the liver that were exposed to lipopolysaccharides (LPS) along with a strain of Pro acnes; thus yielding IL18 [30,31]. It was initially assumed that IL-12 was the cytokine responsible for liver toxicity via induction of IFNg secretion, and then it was discovered that liver toxicity was stopped by an antibody to IL-18. Subsequent analysis revealed that animals primed with LPS but lacking IL-18 did not experience liver injury [32, 33]. The Toll/IL-1 receptor (TIR) subcellular domain and external immunoglobulin domain are present in the receptor of members of the IL-1 family. A second receptors subunit is recruited when the ligand attaches to the proper receptor. Myeloid forms differentiating factor 88 (Myd88) messengers, TNFR-associated factors 6 (TRAF6), IL-1Rassociated kinases 4 (IRAK4), along with additional signaling molecules can be recruited thanks to the resultant receptor heterodimer and the alignment of both TIR domains. Usually, this kind of interaction activates the MAPK pathway and nuclear factor-kB (NF-kB) pathways [34-36].

The IL-18 structures of molecules

Two distinct proteins of 192 & 193 amino acids, accordingly, are encoded by cloned murine & human IL-18 cDNAs [37, 38]. Based on the suggested amino acid arrangement, it seems that inflammatory mediator 18 has a unique leader structure that is 35 amino acids long and necessary for inflammatory mediator 18 to be released from the membrane of the cell. Figure 1 illustrates the model that suggests IL-18 could be generated in an earlier form (24 kDa). The 18-kDa matured version is produced by enzymatically cleaving the 24 kDa precursor. When evaluated using the fold recognition approach, the IL-18 peptide has a measurable similarity of 12% as IL-1α and 19% with IL-1, despite the fact that it seems to have no relationship to any other patterns in the databases [39]. FIGURE

Vol. 2, Issue 5, May, 2025

Page No.: 91-101

By using cell lines that respond to IL-18, IL-18 was thought to be attached to a protein in the membrane [40]. That protein was identified for being the IL-1, which receptor-related protein [41], which binds to IL-18 rather than IL-1α. The figure explains the transfer of signals and IL-18 along with IL-1 receptor. Type 1 IL-1 receptors connect with cytokines such receptor accessory protein, and IL-1α binds to both type 1 and type 2 IL-1 receptors [42]. Consequently, IL-1 receptor-related protein throws reflections on the IL-18 receptors. The neophyte member within the IL-1 receptor family, known as IL-1 receptor attachment protein related member (AcPL), was just discovered [43]. Earlier, In vitro, AcPL failed to attach to IL-18; instead, NFkB upregulation and JNK activation were dependent on the coexpression of AcPL and IL-1R rp1. IL-18 binding proteins (IL-18BP) was discovered through studies [44]. There has been a lot of discussion over the part pro-IL-18 plays in IBD, either encouraging auto-inflammatory reactions or to maintain homesostasis in the intestine or protecting from pathogen invasionvia the barrier of the epithelium [45]. It has been demonstrated that the SNP-IL-18 rs1946518 is a risk factor for the onset of IBD [46]. Clinical manifestations of the complicated chronic autoimmune illness include intestinal mucosal inflammation. This disorder may be further separated among Crohn's syndrome as well as colitis with ulcers, which, while they have slightly unique clinical manifestations, are both essentially defined by persistent, recurrent pathogenic inflammation and damage to the cells of the intestinal epithelium [47]. IL-18's involvement in IBD is thought to primarily stem from its ability to control pro-inflammatory reactions. Pro-IL-18 causes Th1 cell differentiation, NK cell causing cytotoxicity and IFN-g production inflammasome activation [48]. Through the IL-18-MAP3K2-JNK axis, MAP3K2 is necessary for intestinal inflammation mediated by IL-18-Th1 [49]. It was recently demonstrated that telomere disruption causes ATM to activate transcriptional regulator YAP1, which in turn upregulates pro-IL-18. This, in turn, triggers IL-18 signaling when caspase 1 is activated by the colonic microbiota [50]. It was possible to regulate the axis of ATM/YAP1/pro-IL-18 by pharmacologically reactivating telomerase activity [51]. IL-18 was generated by entering the inflamed intestinal mucosa as macrophages, which might subsequently regulate intestinal mucosal lymphoid cells, according to the considerably higher levels in the serum of IL-18 in Crohn's disease patients compared to healthy individuals [52,53]. Anti-IL-18 medication has been considered as a possible treatment for IBD in one Mendelian randomization trial [54]. This has also been confirmed by a research that found high blood IL-18 levels and a genetically vulnerable IL-18 SNP in Patients with Crohn's syndrome who don't respond to anti-TNF drugs [55].

Rheumatoid arthritis (RA)

Numerous studies have suggested that RA is a type of joint illness that is unique to the entire body and is caused by the T helper 1 (Th1). In many populations, RA has been linked to the IL-18 gene variations rs1946518 (-607 A > C) as well as rs187238 (-137 G > C) [56,57]. Using samples taken from patients having In vitro findings show the importance of IL-18 in fibroblast' NFkB signalingmediated synthesis of the CXC chemokine following synovectomy or a complete knee replacement [58]. Through inflammation, this cytokine may contribute to the pathophysiology of RA. Leukocyte extravasation is aided by Vascular cell adherence molecules are upregulated, the attraction of neutrophils and monocytes, or lymphocytes that are thought to be chemostatic agents, as well as chemotherapy eliminates from fibroblasts in the synovial fluid [59,60]. It has been demonstrated that IL-18 can increase cartilage inflammation brought on by inadequate Freund's adjuvant immunization in mice or collagen-induced (CIA) [61,62]. When IL-18 administered to IL-18-/-mice, the same outcome was shown [63]. Nonetheless, synovitis in RA has been found to have a small amount of IFN-g [64]. The following is thought to occur because IL-18 would prevent the development of the Th1 phenotype without increasing the production of IFN-g levels since inhibitory molecules like TGF-b and IL-10 are highly expressed. Along with their distinct routes, IL-18 has been shown to have certain special roles in causing the elevation and outflow of angiogenic agents in RA synovial tissues, including VEGF for short MCP-1, as well as SDF-1a [65]. IL-18's stimulating effect inside of RA neutrophils in vitro also resulted in a surface manifestation of vascular CAM and neutrophil chemotactic activity [66]. Additionally, IL-18, which is produced through the synovial fibroblasts and acts through Synovial macrophages create TNF, which subsequently acts in a beneficial feedback loop. Notably, compared to

Page No.: 91-101

individuals with bone arthritis who have progressive joint difficulties, RA synovial tissue have noticeably greater amounts of inflammatory mediator 18 both mRNA and protein [67]. NFkB and MAPK pathway phosphorylation that is dysregulated has been linked to impaired NK cell IL-18 signaling [68,69].

Psoriasis

Although its mechanisms are still unclear, Psoriasis is a persistent inflammatory skin condition that is thought to be caused by a combination about cytokines as well as chemokines produced by tissue and immune cells [70][71]. This article explains how IL-18 helps to activate Th1 cells, which in turn generate an inflammatory response in the psoriasis lesion when IFN-g is present [72]. Frontiers in Immunology Frontiersin.org Fimmu.2022.919973 Ten-point-three-three-eight-nine Ihim associates. Since human keratinocytes have been found to generate IL-18, it is possible that these cells secrete IL-18 to promote the dermal Th1 immune system response, which is linked to psoriatic lesions [73]. Miquimod (IMQ)-treated mice in an IL-18deficient psoriasis paradigm had larger Munro micro-abscess areas and higher levels of IL-1beta & 4 & IL-27 in comparison to a wild-type (WT) controls [74]. This indicates that IL-18 may have altered pathophysiology the of psoriasis inflammatory in addition to potentially exacerbating it. In human investigations, skin portions about patients with psoriasis have greater amounts of Caspase-1 and IL-18 compared with those from healthy individuals [73]. Additionally, there was a markedly higher blood levels of IL-18 in psoriasis [75]. UVB stimulation increases the production of IL-18 in the Toll and mimicked humans keratinocyte cell line-HaCaT [76]. In fact, several studies have shown that IL-18 is a highly reliable indicator of psoriasis clinical symptoms [77,78,79,80].

Systemic lupus erythematosus (SLE)

The failure to remove apoptotic cells and respond appropriately is linked to SLE. IL-18 release is one facet of inflammatory cell death signaling that could be somewhat related to this systemic illness. There have been reports of elevated serum IL-18 amounts among SLE patients [81,82]. Serum IL-18 levels were higher in patients with lupus nephritis (LN) than in those without LN, although renal biopsy revealed glomeruli that were IL-18-positive in LN patients [82]. In the lpr/lpr SLE mouse model, lymph node cells produced more IFN-y and were more sensitive to IL-18. It's interesting to note that whereas lpr/lpr along with control mice expressed IL-18Rα The expression of the IL-18Rβ chain was much greater in lpr/lpr animals at similar levels. Since the IL-18 receptor complex's signal-inducing element is the IL-18Rβ chain, increased IFN-γ induction may cause Th1-mediated illness in these animals [83]. Immunized with a cDNA vector producing IL-18, SLE-prone lpr/lpr mice developed IL-18 self-antibodies in vivo along with reduced IFN-γ along with renal damage. Compared to mice injected with an empty vector, this was likewise noticeably delayed [84]. According to the data, lpr/lpr mice displayed elevated levels of IL-18, particularly in lymph nodes, from an early age. It's interesting to note that measurable cytokine protein levels were incredibly low with increased IL-18BP mRNA, suggesting either instability protein expression or rapid breakdown. This might once more be the cause of an imbalance in the way IL-18 is regulated (via IL-18BP), which causes illness in mice [85].

Macrophage activation syndrome (MAS)

IL-18 in Macrophage Activation Syndrome:

A potentially fatal side effect of several Lupus erythematosus systemic (SLE), infections, and sJIA/AOSD are examples of inflammatory illnesses (explained in Section 6.1), is hemophagocytic lymphohistiocytosis as well as macrophage activation syndrome (sHLH-MAS). An growing number of instances of additional systemic inflammatory disorders, such those documented by Davis et al., became apparent as MAS gained greater clinical recognition [86]. Excessive activation including proliferation of T cell lymphocytes, primarily destructive CD8+ T cells, macrophages are its defining characteristics [87,88]. The creation of Permeable TNF receptors and IL-1R antagonists are examples of natural cytokine inhibitors that stimulate activation, which raises inflammatory cytokines including IFNγ, inflammatory mediator 2, M-CSF, IL-1, IL-6, and IL-18 in addition to TNF [88,89]. Although the precise source of IL-18 throughout MAS is still unknown, blood from MAS patients, for instance, exhibits very high levels of IL-18 relative to any other cytokine [88]. IL-18 appears to be mainly generated by epithelial cells and is elevated in peripheral mononuclear cells, according investigations of immune cell and murine tissue gene expression [90,86,91,92]. The involvement of

International Journal of Pharmaceutical Drug Design (IJPDD)
Website: https://ijpdd.org/
ISSN: 2584-2897
Vol. 2, Issue 5, May, 2025

Page No.: 91-101

AOSD [103]. There exists proof that half of these individuals had an all-normal temperature of the body with CRP levels minimized to 50% of their initial levels or less.

IL-18 to MAS was inferred from its function in CD8+ T & NK cell production of IFNy [93,94]. However, due to both NK cell scarcity and inherent functional inefficiency, NK cytolytic capacity is significantly reduced in MAS patients [95]. Through the stimulation of TNF, IL-1, IL-8, along with IL-6, IL-18 directly promotes inflammation while also acting to serve as co-stimulus in the development of IFNy [86,88,96]. The proliferation of autoimmune Th1-type CD4+ T, lethal CD8+ T, along with NK cells, in addition to their enormous overproduction, are triggered by elevated blood levels of IFNy [97]. macrophages, cells and which avoid immunoregulatory control by using NK cellmediated cytotoxicity, may be activated by a sudden increase in free IL-18. Conditions that favor MAS might result from this occurrence [87]. Along with generating cytokines that promote inflammation, such as TNF, inflammatory mediator 1 inflammatory mediator 6, IFNy also stimulates macrophages. The development of MAS may possibly be related to inhibition of the production of IL-10 [93]. Other studies indicated that inhibiting IL-18 receptor signaling reduced the severity of MAS & the IFNy responses in mice treated with IL-18BP [98]. Findings regarding higher free IL-18 blood levels among patients MAS corroborated.

Inflammatory mediator 18 being a target for treatment

Recombinant inflammatory mediator-18 might be a useful target for treatment for diseases like AOSD and s-JIA. Patients with MAS linked to s-JIA [99], XIAP impairment [100], including NLRC4 gain-offunction [101] have responded well to treatment by tadekinig alpha, a human recombinant IL-18BP. Serum levels of unbound IL-18 were shown to be undetectable two hours after delivering IL-18BP, although being significantly elevated before the subcutaneous injection, in a recent case report involving a patient with AOSD receiving tadekinig alfa [102]. Additionally, it was shown that blood concentrations of free IL-18 stayed low throughout illness remission when receiving medicine for tadekinig alfa and then raised after quitting it while experiencing relapses. To verify the physiological effect of tadekinig the alpha on IL-18-driven illnesses, specifically s-JIA and AOSD, Equality shows that a large portion of the individual population benefited from a phase 2 clinical study of taking alfa among individuals with unresponsive

CONCLUSION

IL-18 is a crucial inflammatory amplifier in several illnesses. Thus, understanding the role of IL-18 will help us better understand the causes of illnesses and pave the way for customized therapies that lessen exaggerated inflammatory responses. The creators of this research mainly address the role of IL-1 and IL-18 in aging from the perspective that these two cytokines cause inflammation. Research has shown that IL-1 plays a significant role in inflammation, but little is known about how IL-18 works. IL-18 is thought to play a role in atherosclerosis and, consequently, aging, in addition to being involved in autoimmune illnesses. In this context, IL-18 might not have been examined. However, there is a substantial amount of evidence that IL-1 suppresses appetite. Targeting IL-1 and IL-18 is a beneficial therapeutic strategy for calming down the aging process.

REFERENCES

- 1. Okamura H, Nagata K, Komatsu T, Tanimoto T, Nukata Y, Tanabe F, et al. A novel costimulatory factor for gamma interferon induction found in the livers of mice causes endotoxic shock. Infection and Immunity. 1995;63(10):3966-72.
- Boraschi D, Dinarello CA. IL18 in autoimmunity: review. European Cytokine Network. 2006;17(4):224-52.
- Dinarello CA. Interleukin-18 and the pathogenesis of inflammatory diseases.
 Seminars in Nephrology. 2007;27(1):98-114. doi:10.1016/j.semnephrol.2006.09.013.
- 4. Tsutsui H, Nakanishi K. Immunotherapeutic applications of IL-18. Immunotherapy. 2012;4(12):1883-94. doi:10.2217/imt.12.137.
- Sims JE, Smith DE. The IL-1 family: regulators of immunity. Nature Reviews Immunology. 2010;10(2):89-102. doi:10.1038/nri2691.

ol. 2, Issue 5, May, 2025 Page No.: 91-101

- 7. Sims JE, Nicklin MJ, Bazan JF, Barton JL, Busfield SJ, Ford JE, et al. A new nomenclature for IL-1-family genes. Trends in Immunology. 2001;22(10):536-7. doi:10.1016/S1471-4906(01)02040-3.
- 8. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H. Interleukin-18 regulates both Th1 and Th2 responses. Annual Review of Immunology. 2001;19:423-74. doi:10.1146/annurev.immunol.19.1.423.
- Nakanishi K. Unique action of interleukin-18 on t cells and other immune cells. Frontiers in Immunology. 2018;9:763. doi:10.3389/fimmu.2018.00763.
- Yasuda K, Nakanishi K, Tsutsui H. Interleukin-18 in health and disease. International Journal of Molecular Sciences. 2019;20(3):649. doi:10.3390/ijms20030649.
- Sedimbi SK, Hagglof T, Karlsson MC. IL-18 in inflammatory and autoimmune disease. Cellular and Molecular Life Sciences. 2013;70(24):4795-808. doi:10.1007/s00018-013-1425-y.
- 12. Gangemi S, Merendino RA, Guarneri F, Minciullo PL, DiLorenzo G, Pacor M, et al. Serum levels of interleukin-18 and s-ICAM-1 in patients affected by psoriasis: preliminary considerations. Journal of the European Academy of Dermatology and Venereology. 2003;17(1):42-6. doi:10.1046/j.1468-3083.2003.00647.x.
- 13. Park MC, Park YB, Lee SK. Elevated interleukin-18 levels correlated with disease activity in systemic lupus erythematosus. Clinical Rheumatology. 2004;23(3):225-9. doi:10.1007/s10067-004-0867-x.
- Rezaieyazdi Z, AkbariRad M, Saadati N, Salari M, Orang R, Sedighi S, et al. Serum interleukin-18 and its relationship with subclinical atherosclerosis in systemic lupus erythematosus. ARYA Atherosclerosis. 2021;17(6):1-6. doi:10.22122/arya.v17i0.2126.
- 15. Thomas JM, Huuskes BM, Sobey CG, Drummond GR, Vinh A. The IL-18/IL-18R1 signalling axis: Diagnostic and therapeutic potential in hypertension and chronic kidney disease. Pharmacology & Therapeutics. 2022;239:108191.
 - doi:10.1016/j.pharmthera.2022.108191.
- 16. Nicoletti F, Di Marco R, Mangano K, Patti F, Reggio E, Nicoletti A, et al. Increased serum levels of interleukin-18 in patients with multiple

- sclerosis. Neurology. 2001;57(2):342-4. doi:10.1212/WNL.57.2.342.
- 17. Losy J, Niezgoda A. IL-18 in patients with multiple sclerosis. Acta Neurologica Scandinavica. 2001;104(3):171-3. doi:10.1034/j.1600-0404.2001.00356.x.
- Takahashi T, Ellingson MK, Wong P, Israelow B, Lucas C, Klein J, et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature. 2020;588(7837):315-20. doi:10.1038/s41586-020-2700-3.
- Rodrigues TS, de Sa KSG, Ishimoto AY, Becerra A, Oliveira S, Almeida L, et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. Journal of Experimental Medicine. 2021;218(3):e20201707. doi:10.1084/jem.20201707.
- Franciotta D, Martino G, Zardini E, Furlan R, Bergamaschi R, Gironi M, et al. Caspase-1 levels in biological fluids from patients with multiple sclerosis and from patients with other neurological and non-neurological diseases. European Cytokine Network. 2002;13(1):99-103. doi:10.1084/jem.20201707.
- 21. Rothe H, Hibino T, Itoh Y, Kolb H, Martin S. Systemic production of interferon-gamma inducing factor (IGIF) versus local IFN-gamma expression involved in the development of Th1 insulitis in NOD mice. Journal of Autoimmunity. 1997;10(3):251-6. doi:10.1006/jaut.1997.0135.
- 22. Marleau AM, Sarvetnick NE. IL-18 is required for self-reactive T cell expansion in NOD mice. Journal of Autoimmunity. 2011;36(3-4):263-77. doi:10.1016/j.jaut.2011.02.005.
- Zaccone P, Phillips J, Conget I, Cooke A, Nicoletti F. IL-18 binding protein fusion construct delays the development of diabetes in adoptive transfer and cyclophosphamide-induced diabetes in NOD mouse. Clinical Immunology. 2005;115(1):74-9. doi:10.1016/j.clim.2004.11.007.
- 24. Wei XQ, Leung BP, Arthur HM, McInnes IB, Liew FY. Reduced incidence and severity of collagen-induced arthritis in mice lacking IL-18. Journal of Immunology. 2001;166(1):517-21. doi:10.4049/jimmunol.166.1.517.
- 25. Gutcher I, Urich E, Wolter K, Prinz M, Becher B. Interleukin 18-independent engagement of

Page No.: 91-101

- interleukin 18 receptor-alpha is required for autoimmune inflammation. Nature Immunology. 2006;7(9):946-53. doi:10.1038/ni1377.
- 26. Chandrasekar B, Patel DN, Mummidi S, Kim JW, Clark RA, Valente AJ. Interleukin-18 suppresses adiponectin expression in 3T3-L1 adipocytes via a novel signal transduction pathway involving ERK1/2-dependent NFATc4 phosphorylation. Journal Biological Chemistry. 2008;283(7):4200-9. doi:10.1074/jbc.M708142200.
- 27. Shi FD, Wang HB, Li H, Hong S, Taniguchi M, Link H, et al. Natural killer cells determine the outcome of b cell-mediated autoimmunity. Nature Immunology. 2000;1(3):245-51. doi:10.1038/79792.
- 28. Lob S, Ochmann B, Ma Z, Vilsmaier T, Kuhn C, Schmoeckel E, et al. The role of interleukin-18 in recurrent early pregnancy loss. Journal of Reproductive Immunology. 2021;148:103432. doi:10.1016/j.jri.2021.103432.
- 29. Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, et al. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature. 1995;378(6552):88-91. doi:10.1038/378088a0.
- 30. Nakamura K, Okamura H, Nagata K, Komatsu T, Tamura T. Purification of a factor which provides a costimulatory signal for gamma interferon production. Infection and Immunity. 1993;61(1):64-70. doi:10.1128/iai.61.1.64-70.1993.
- 31. Dinarello CA. IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. Journal of Allergy and Clinical Immunology. 1999;103(1 Pt 1):11-24. doi:10.1016/S0091-6749(99)70518-X.
- 32. Takeda K, Tsutsui H, Yoshimoto T, Adachi O, Yoshida N, Kishimoto T, et al. Defective NK cell activity and Th1 response in IL-18deficient mice. Immunity. 1998;8(3):383-90. doi:10.1016/S1074-7613(00)80543-9.
- 33. Sakao Y, Takeda K, Tsutsui H, Kaisho T, Nomura F, Okamura H, et al. IL-18-deficient mice are resistant to endotoxin-induced liver injury but highly susceptible to endotoxin shock. International Immunology. 1999;11(3):471-80. doi:10.1093/intimm/11.3.471.
- 34. O'Neill LA. The interleukin-1 receptor/Tolllike receptor superfamily: signal transduction

- during inflammation and host defense. Science's STKE. 2000;2000(44):re1. doi:10.1126/stke.442000re1.
- 35. Dunne A, O'Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Science's STKE. 2003;2003(171):re3. doi:10.1126/stke.2003.171.re3.
- 36. O'Neill LA. The interleukin-1 receptor/Tolllike receptor superfamily: 10 years of progress. Immunological Reviews. 2008;226:10-8. doi:10.1111/j.1600-065X.2008.00701.x.
- 37. Okamura H, Tsutsui H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, et al. Cloning of a new cytokine that induces IFN-y production by T 1995;378(6552):88-91. cells. Nature. doi:10.1038/378088a0.
- 38. Ushio S, Namba M, Okura T, Hattori K, Nukada Y, Akita K, et al. Cloning of the cDNA for human IFN-γ-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. Journal Immunology. 1996;156(11):4274-9.
- 39. Hunter CA, Timans J, Pisacane P, Menon S, Cai G, Walker W, et al. Comparison of the effects of interleukin-1 alpha, interleukin-1 beta and interferon-gamma-inducing factor on production of interferon-gamma by natural killer cells. European Journal of Immunology. 1997;27(11):2787-92. doi:10.1002/eji.1830271104.
- 40. Torigoe K, Ushio S, Okura T, Kobayashi S, Taniai M, Kinikata T, et al. Purification and characterization of the human interleukin-18 receptor. Journal of Biological Chemistry. 1997;272(41):25737-42. doi:10.1074/jbc.272.41.25737.
- 41. Sims JE, Painter SL, Gow IR. Genomic organization of the type I and type II IL-1 Cytokine. 1995;7(6):483-90. receptors. doi:10.1006/cyto.1995.0066.
- 42. Greenfeder SA, Nunes P, Kwee L, Labow M, Chizzonite RA, Ju G. Molecular cloning and characterization of a second subunit of the interleukin 1 receptor complex. Journal of Biological Chemistry. 1995;270(23):13757-65. doi:10.1074/jbc.270.23.13757.
- 43. Born TL, Thomassen E, Bird TA, Sims JE. Cloning of a novel receptor subunit, AcPL, required for interleukin-18 signaling. Journal of Biological Chemistry. 1998;273(45):29445-50. doi:10.1074/jbc.273.45.29445.

Vol. 2, Issue 5, May, 2025 Page No.: 91-101

- 44. Novick D, Kim SH, Fantuzzi G, Reznikov LL, Dinarello CA, Rubinstein M. Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity. 1999;10(1):127-36. doi:10.1016/s1074-7613(00)80013-8.
- 45. Williams MA, O'Callaghan A, Corr SC. IL-33 and IL-18 in inflammatory bowel disease etiology and microbial interactions. Frontiers in Immunology. 2019;10:1091. doi:10.3389/fimmu.2019.01091.
- Su Y, Zhao H. Predisposition of inflammatory bowel disease is influenced by IL-8, IL-10, and IL-18 polymorphisms: a meta-analysis. International Archives of Allergy and Immunology. 2020;181(10):799-806. doi:10.1159/000509110.
- 47. Nowarski R, Jackson R, Gagliani N, de Zoete MR, Palm NW, Bailis W, et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell. 2015;163(6):1444-56. doi:10.1016/j.cell.2015.10.072.
- 48. Chaix J, Tessmer MS, Hoebe K, Fuseri N, Ryffel B, Dalod M, et al. Cutting edge: Priming of NK cells by IL-18. Journal of Immunology. 2008;181(3):1627-31. doi:10.4049/jimmunol.181.3.1627.
- Wu N, Chen D, Sun H, Tan J, Zhang Y, Zhang T, et al. MAP3K2 augments Th1 cell differentiation via IL-18 to promote T cell-mediated colitis. Science China Life Sciences. 2021;64(3):389-403. doi:10.1007/s11427-020-1720-9.
- Chakravarti D, Hu B, Mao X, Rashid A, Li J, Li J, et al. Telomere dysfunction activates YAP1 to drive tissue inflammation. Nature Communications. 2020;11(1):4766. doi:10.1038/s41467-020-18420-w.
- Chakravarti D, Lee R, Multani AS, Santoni A, Keith Z, Hsu WH, et al. Telomere dysfunction instigates inflammation in inflammatory bowel disease. Proceedings of the National Academy of Sciences. 2021;118(29):e2024853118. doi:10.1073/pnas.2024853118.
- 52. Leach ST, Messina I, Lemberg DA, Novick D, Rubenstein M, Day AS. Local and systemic interleukin-18 and interleukin-18-binding protein in children with inflammatory bowel disease. Inflammatory Bowel Diseases. 2008;14(1):68-74. doi:10.1002/ibd.20272.
- 53. Kanai T, Watanabe M, Okazawa A, Nakamaru K, Okamoto M, Naganuma M, et al. Interleukin 18 is a potent proliferative factor for intestinal

- mucosal lymphocytes in Crohn's disease. Gastroenterology. 2000;119(6):1514-23. doi:10.1053/gast.2000.20260.
- 54. Mokry LE, Zhou S, Guo C, Scott RA, Devey L, Langenberg C, et al. Interleukin-18 as a drug repositioning opportunity for inflammatory bowel disease: a Mendelian randomization study. Scientific Reports. 2019;9(1):9386. doi:10.1038/s41598-019-45747-2.
- 55. Bank S, Andersen PS, Burisch J, Pedersen N, Roug S, Galsgaard J, et al. Genetically determined high activity of IL-12 and IL-18 in ulcerative colitis and TLR5 in Crohn's disease were associated with non-response to anti-TNF therapy. Pharmacogenomics Journal. 2018;18(1):87-97. doi:10.1038/tpj.2016.84.
- 56. Pawlik A, Kurzawski M, Drozdzik M, Dziedziejko V, Safranow K, Herczynska M. Interleukin-18 gene (IL18) promoter polymorphisms in patients with rheumatoid arthritis. Scandinavian Journal of Rheumatology. 2009;38(3):159-65. doi:10.1080/03009740802600748.
- 57. Koper-Lenkiewicz OM, Sutkowska K. Wawrusiewicz-Kurylonek N, Kowalewska E, Matowicka-Karna Proinflammatory J. cytokines (IL-1a, IL-6, IL-8, IL-15, IL-17, IL-IL-23, $TNF-\alpha$) single nucleotide polymorphisms in rheumatoid arthritis-a literature review. International Journal of Molecular Sciences. 2022;23(4):2106. doi:10.3390/ijms23042106.
- Morel JC, Park CC, Kumar P, Koch AE. Interleukin-18 induces rheumatoid arthritis synovial fibroblast CXC chemokine production through NFkappaB activation. Laboratory Investigation. 2001;81(10):1371-83. doi:10.1038/labinvest.3780351.
- Volin MV, Koch AE. Interleukin-18: a mediator of inflammation and angiogenesis in rheumatoid arthritis. Journal of Interferon & Cytokine Research. 2011;31(10):745-51. doi:10.1089/jir.2011.0050.
- Szekanecz Z, Koch AE. Cell-cell interactions in synovitis. Endothelial cells and immune cell migration. Arthritis Research. 2000;2(5):368-73. doi:10.1186/ar114.
- 61. Luross JA, Williams NA. The genetic and immunopathological processes underlying collagen-induced arthritis. Immunology. 2001;103(4):407-16. doi:10.1046/j.1365-2567.2001.01267.x.

Page No.: 91-101

- 62. Schinnerling K, Rosas C, Soto L, Thomas R, Aguillon JC. Humanized mouse models of rheumatoid arthritis for studies on immunopathogenesis and preclinical testing of cell-based therapies. Frontiers in Immunology. 2019;10:203. doi:10.3389/fimmu.2019.00203.
- 63. Wei XQ, Leung BP, Arthur HM, McInnes IB, Liew FY. Reduced incidence and severity of collagen-induced arthritis in mice lacking IL-18. Journal of Immunology. 2001;166(1):517-21. doi:10.4049/jimmunol.166.1.517.
- 64. Dayer JM. Interleukin-18, rheumatoid arthritis, and tissue destruction. Journal of Clinical Investigation. 1999;104(10):1337-9. doi:10.1172/JCI8731.
- 65. Amin MA, Mansfield PJ, Pakozdi A, Campbell PL, Ahmed S, Martinez RJ, et al. Interleukin-18 induces angiogenic factors in rheumatoid arthritis synovial tissue fibroblasts via distinct signaling pathways. Arthritis & Rheumatism. 2007;56(6):1787-97. doi:10.1002/art.22705.
- 66. Morel JC, Park CC, Zhu K, Kumar P, Ruth JH, Koch AE. Signal transduction pathways involved in rheumatoid arthritis synovial fibroblast interleukin-18-induced vascular cell adhesion molecule-1 expression. Journal of Biological Chemistry. 2002;277(38):34679-91. doi:10.1074/jbc.M206337200.
- 67. Thomson A, Hilkens CMU. Synovial macrophages in osteoarthritis: the key to understanding pathogenesis? Frontiers in Immunology. 2021;12:678757. doi:10.3389/fimmu.2021.678757.
- 68. Vandenhaute J, Wouters CH, Matthys P. Natural killer cells in systemic autoinflammatory diseases: a focus on systemic juvenile idiopathic arthritis and macrophage activation syndrome. Frontiers in Immunology. 2019;10:3089. doi:10.3389/fimmu.2019.03089.
- 69. Ohya T, Nishimura K, Murase A, Hattori S, Ohara A, Nozawa T, et al. Impaired interleukin-18 signaling in natural killer cells from patients with systemic juvenile idiopathic arthritis. ACR Open Rheumatology. 2022;4(6):503-10. doi:10.1002/acr2.11426.
- Niu XL, Huang Y, Gao YL, Sun YZ, Han Y, Chen HD, et al. Interleukin-18 exacerbates skin inflammation and affects microabscesses and scale formation in a mouse model of imiquimod-induced psoriasis. Chinese Medical Journal. 2019;132(6):690-8. doi:10.1097/CM9.0000000000000140.

- 71. Grozdev I, Korman N, Tsankov N. Psoriasis as a systemic disease. Clinics in Dermatology. 2014;32(3):343-50. doi:10.1016/j.clindermatol.2013.11.001.
- Sedimbi SK, Hagglof T, Karlsson MC. IL-18 in inflammatory and autoimmune disease. Cellular and Molecular Life Sciences. 2013;70(24):4795-808. doi:10.1007/s00018-013-1425-y.
- 73. Ohta Y, Hamada Y, Katsuoka K. Expression of IL-18 in psoriasis. Archives of Dermatological Research. 2001;293(7):334-42. doi:10.1007/s004030100240.
- 74. Niu XL, Huang Y, Gao YL, Sun YZ, Han Y, Chen HD, et al. Interleukin-18 exacerbates skin inflammation and affects microabscesses and scale formation in a mouse model of imiquimod-induced psoriasis. Chinese Medical Journal. 2019;132(6):690-8. doi:10.1097/CM9.0000000000000140.
- 75. Gangemi S, Merendino RA, Guarneri F, Minciullo PL, DiLorenzo G, Pacor M, et al. Serum levels of interleukin-18 and s-ICAM-1 in patients affected by psoriasis: preliminary considerations. Journal of the European Academy of Dermatology and Venereology. 2003;17(1):42-6. doi:10.1046/j.1468-3083.2003.00647.x.
- 76. Cho D, Kang JS, Park JH, Kim YI, Hahm E, Lee J, et al. The enhanced IL-18 production by UVB irradiation requires ROI and AP-1 signaling in human keratinocyte cell line (HaCaT). Biochemical and Biophysical Research Communications. 2002;298(2):289-95. doi:10.1016/S0006-291X(02)02433-6.
- 77. Valenzuela F, Fernandez J, Jimenez C, Cavagnola D, Mancilla JF, Astorga J, et al. Identification of IL-18 and soluble cell adhesion molecules in the gingival crevicular fluid as novel biomarkers of psoriasis. Life. 2021;11(10):1000. doi:10.3390/life11101000.
- 78. Forouzandeh M, Besen J, Keane RW, de Rivero Vaccari JP. The inflammasome signaling proteins ASC and IL-18 as biomarkers of psoriasis. Frontiers in Pharmacology. 2020;11:1238. doi:10.3389/fphar.2020.01238.
- Pourani MR, Abdollahimajd F, Zargari O, Dadras MS. Soluble biomarkers for diagnosis, monitoring, and therapeutic response assessment in psoriasis. Journal of Dermatological Treatment. 2022;33(1):639-46. doi:10.1080/09546634.2021.1966357.

ISSN: 2584-2897

Vol. 2, Issue 5, May, 2025 Page No.: 91-101

- 80. Ruiz-Irastorza G, Khamashta MA, Castellino G, Hughes GR. Systemic lupus erythematosus. Lancet. 2001;357(9261):1027-32. doi:10.1016/S0140-6736(00)04239-2.
- 81. Wong CK, Li EK, Ho CY, Lam CW. Elevation of plasma interleukin-18 concentration is correlated with disease activity in systemic lupus erythematosus. Rheumatology. 2000;39(10):1078-81.
 - doi:10.1093/rheumatology/39.10.1078.
- 82. Park MC, Park YB, Lee SK. Elevated interleukin-18 levels correlated with disease activity in systemic lupus erythematosus. Clinical Rheumatology. 2004;23(3):225-9. doi:10.1007/s10067-004-0867-x.
- 83. Neumann D, Del Giudice E, Ciaramella A, Boraschi D, Bossu P. Lymphocytes from autoimmune MRL lpr/lpr mice hyperresponsive to IL-18 and overexpress the IL-18 receptor accessory chain. Journal of Immunology. 2001;166(6):3757-62. doi:10.4049/jimmunol.166.6.3757.
- 84. Bossu P, Neumann D, Del Giudice E, Ciaramella A, Gloaguen I, Fantuzzi G, et al. IL-18 cDNA vaccination protects mice from spontaneous lupus-like autoimmune disease. Proceedings of the National Academy of 2003;100(24):14181-6. Sciences. doi:10.1073/pnas.2336094100.
- 85. Favilli F, Anzilotti C, Martinelli L, Quattroni P, De Martino S, Pratesi F, et al. IL-18 activity in systemic lupus erythematosus. Annals of the New York Academy of Sciences. 2009;1173:301-9. doi:10.1111/j.1749-6632.2009.04655.x.
- 86. Crayne CB, Albeituni S, Nichols KE, Cron RQ. The immunology of macrophage activation syndrome. Frontiers in Immunology. 2019;10:119. doi:10.3389/fimmu.2019.00119.
- 87. Avcin T, Tse SM, Schneider R, Ngan B, Silverman ED. Macrophage activation syndrome as the presenting manifestation of rheumatic diseases in childhood. Journal of Pediatrics. 2006;148(5):683-6. doi:10.1016/j.jpeds.2006.01.017.
- 88. Schulert GS, Grom AA. Pathogenesis of macrophage activation syndrome and potential for cytokine-directed therapies. Annual Review of 2015;66:145-59. Medicine. doi:10.1146/annurev-med-061813-012806.
- 89. Sumegi J, Barnes MG, Nestheide SV, Molleran-Lee S, Villanueva J, Zhang K, et al. Gene

- expression profiling of peripheral blood mononuclear cells from children with active hemophagocytic lymphohistiocytosis. Blood. 2011;117(15):e151-60. doi:10.1182/blood-2010-08-300046.
- 90. Dinarello CA, Novick D, Kim S, Kaplanski G. Interleukin-18 and IL-18 binding protein. Frontiers in Immunology. 2013;4:289. doi:10.3389/fimmu.2013.00289.
- 91. Weiss ES, Girard-Guyonvarc'h C, Holzinger D, de Jesus AA, Tariq Z, Picarsic J, et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood. doi:10.1182/blood-2018;131(13):1442-55. 2017-12-820852.
- 92. Ogilvie EM, Khan A, Hubank M, Kellam P, Woo P. Specific gene expression profiles in systemic juvenile idiopathic arthritis. Arthritis 2007;56(6):1954-65. Rheumatism. doi:10.1002/art.22644.
- 93. Shimizu M, Takei S, Mori M, Yachie A. Pathogenic roles and diagnostic utility of interleukin-18 in autoinflammatory diseases. Frontiers in Immunology. 2022;13:951535. doi:10.3389/fimmu.2022.951535.
- 94. Mellins ED, Macaubas C, Grom AA. Pathogenesis of systemic juvenile idiopathic arthritis: some answers, more questions. Nature Reviews Rheumatology. 2011;7(7):416-26. doi:10.1038/nrrheum.2011.68.
- 95. de Jager W, Vastert SJ, Beekman JM, Wulffraat NM, Kuis W, Coffer PJ, et al. Defective phosphorylation of interleukin-18 receptor beta causes impaired natural killer cell function in systemic-onset juvenile idiopathic arthritis. Arthritis & Rheumatism. 2009;60(9):2782-93. doi:10.1002/art.24750.
- 96. Netea MG, Kullberg BJ, Verschueren I, Van Der Meer JW. Interleukin-18 production of proinflammatory cytokines in mice: No intermediate role for the cytokines of the tumor necrosis factor family interleukin-1beta. European Journal of Immunology. 2000;30(10):3057-60. doi:10.1002/1521-4141(200010)30:10<3057::AID-IMMU3057>3.0.CO;2-P.
- 97. Kawashima M, Yamamura M, Taniai M, Yamauchi H, Tanimoto T, Kurimoto M, et al. Levels of interleukin-18 and its binding inhibitors in the blood circulation of patients

International Journal of Pharmaceutical Drug Design (IJPDD)

Website: https://ijpdd.org/ ISSN: 2584-2897

Vol. 2, Issue 5, May, 2025 Page No.: 91-101

- with adult-onset Still's disease. Arthritis & Immunology. 2022;42(4):901-3. Rheumatism. 2001;44(3):550-60. doi:10.1007/s10875-022-01236-2.
- doi:10.1002/1529- 101.Canna SW, Girard 0131(200103)44:3<550::AID- Romberg N, Kelse
- 98. Girard-Guyonvarc'h C, Palomo J, Martin P, Rodriguez E, Troccaz S, Palmer G, et al. Unopposed IL-18 signaling leads to severe TLR9-induced macrophage activation syndrome in mice. Blood. 2018;131(13):1430-41. doi:10.1182/blood-2017-06-789552.

ANR103>3.0.CO;2-5.

- 99. Yasin S, Solomon K, Canna SW, Girard-Guyonvarc'h C, Gabay C, Schiffrin E, et al. IL-18 as therapeutic target in a patient with resistant systemic juvenile idiopathic arthritis and recurrent macrophage activation syndrome. Rheumatology. 2020;59(2):442-5. doi:10.1093/rheumatology/kez284.
- 100.Geerlinks AV, Dvorak AM. XIAP deficiency treatment consortium. A case of XIAP deficiency successfully managed with tadekinig alfa (rhIL-18BP). Journal of Clinical

- 101.Canna SW, Girard C, Malle L, de Jesus A, Romberg N, Kelsen J, et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. Journal of Allergy and Clinical Immunology. 2017;139(5):1698-701. doi:10.1016/j.jaci.2016.10.022.
- 102. Kiltz U, Kiefer D, Braun J, Schiffrin EJ, Girard-Guyonvarc'h C, Gabay C. Prolonged treatment with tadekinig alfa in adult-onset Still's disease. Annals of the Rheumatic Diseases. 2020;79(1):e10. doi:10.1136/annrheumdis-2018-214496.
- 103.Gabay C, Fautrel B, Rech J, Spertini F, Feist E, Kötter I, et al. Open-label, multicentre, dose-escalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still's disease. Annals of the Rheumatic Diseases. 2018;77(6):840-7. doi:10.1136/annrheumdis-2017-212608.