Website: https://ijpdd.org/ ISSN: 2584-2897 Vol. 2, Issue 5, May, 2025

Page No.: 44-50

Review

Pterocarpus marsupium: A Review of Its Phytochemistry and Pharmacological Spectrum

Siddharth Prakash^{1*}, Umesh Pratap Singh², Nidhi Srivastava³

¹Research Scholar, Department of Pharmacy, Rameshwaram Institute of Technology and Management, Sitapur Road, Lucknow, Uttar Pradesh, India

²Director, Department of Pharmacy, Rameshwaram Institute of Technology and Management, Sitapur Road, Lucknow, Uttar Pradesh, India

³Assistant Professor, Department of Pharmacy, Rameshwaram Institute of Technology and Management, Sitapur Road, Lucknow, Uttar Pradesh, India

Corresponding Author:

Siddharth Prakash

Email: sid887455@gmail.com

DOI: 10.62896/ijpdd.2.5.05

Conflict of interest: NIL

Article HistoryReceived: 12/04/2025
Accepted: 04/05/2025
Published: 07/05/2025

Abstract:

Pterocarpus marsupium, commonly known as Indian Kino Tree, is a versatile medicinal plant widely used in traditional systems of medicine across India, Sri Lanka, and Nepal. This comprehensive review highlights its botanical profile, phytochemical constituents, and diverse pharmacological properties. The plant is a rich source of bioactive compounds such as pterostilbene, marsupsin, and various flavonoid glycosides, which contribute to its therapeutic efficacy. Pharmacological studies demonstrate that extracts from different parts of the plant exhibit antihyperglycemic, antihyperlipidemic, hepatoprotective, inflammatory, antimicrobial, anticancer, antifungal, anti-cataract, and antidiarrheal activities. Its efficacy in lowering blood glucose levels without noticeable toxicity has been affirmed in multicenter ICMR trials. The plant also shows promising cytotoxic activity through apoptosis induction mechanisms and exhibits strong antimicrobial potential against a broad spectrum of pathogens. Despite its beneficial effects, P. marsupium is not recommended in cases of constipation due to its astringent nature. Given the increasing reliance on plant-based therapeutics in primary healthcare, especially in rural settings, P. marsupium stands out as a significant candidate for further pharmacological research and clinical validation. This review aims to consolidate existing data and encourage future investigations into the therapeutic potential of this valuable medicinal species.

Keywords: *Pterocarpus marsupium*, phytochemicals, antidiabetic, antimicrobial, pterostilbene, hepatoprotective.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction:

Traditional medicine, which operates outside the scope of Western medicine, has existed since the earliest days of human civilization and primarily relies on medicinal plants.[1] Currently, herbal medicine is drawing significant interest, especially in low- and middle-income countries, where approximately 80% of the population depends on these treatments as their main healthcare approach. The therapeutic compounds present in medicinal

plants are referred to as bioactive constituents. In traditional healing practices, these compounds are often unknown to practitioners, and their composition can vary from one plant to another. Some well-known bioactive constituents that contribute to the treatment of various diseases include anthraquinones, flavonoids, glycosides, morphine, saponins, tannins, atropine, codeine, steroids, lactones, and essential oils.[2,3]

International Journal of Pharmaceutical Drug Design (IJPDD)

Website: https://ijpdd.org/ ISSN: 2584-2897 Vol. 2, Issue 5, May, 2025

Page No.: 44-50

Plants have been processed and utilized in various forms—including infusions, syrups, decoctions, fortified and essential oils, ointments, and creams—for the treatment of numerous health conditions.[4] *Pterocarpus marsupium* (PM), locally known in Sinhala as *Gammalu*, is one such medicinal plant traditionally employed for managing various

ailments due to its diverse pharmacological properties. Also referred to as Malabar kino, Indian kino, or gum kino, this plant has a rich history of medicinal use.[5,6] It is a medium- to large-sized deciduous tree native to regions such as Sri Lanka, India, and Nepal, and can reach a height of up to 30 meters.[7]

Table-1 The scientific classification of Pterocarpus marsupium[8]

Taxonomic Rank	Classification
Domain	Eukaryota
Kingdom	Plantae
Subkingdom	Viridiplantae
Phylum	Magnoliophyta
Subphylum	Euphyllophytina
Class	Magnoliopsida
Subclass	Rosidae
Superorder	Fabanae
Order	Fabales
Family	Fabaceae
Genus	Pterocarpus
Species	marsupium

Botanical Profile

The plant is a medium to large-sized tree, typically growing between 15 and 30 meters in height. Its trunk is thick, irregular, and twisted, supporting a wide canopy with extensively spreading branches. The bark is coarse and varies in color from dark brown to grey. Leaves are compound and imparipinnate, typically comprising 5 to 7 leathery leaflets. These leaflets are oblong in shape, rounded or notched at the tip, occasionally bilobed, and smooth on both sides. The petioles are cylindrical, smooth, undulating between each leaflet, and measure about 5 to 6 inches in length, with no stipules present. The tree bears large, terminal panicles, whose branching pattern mimics that of the leaves. Peduncles and pedicels are slightly hairy and cylindrical. Small, short-lived bracts are found singly beneath each division of the panicle. The flowers are abundant, predominantly white with a subtle yellow hue. The vexillum (standard petal) is broad with a long, narrow base, its edges turned backward, undulating, curled, and veined. The keel is composed of two petals, slightly fused near the center, wavy and similar in structure to the vexillum. There are 10 stamens, united at the base and then separating into two sets of five; the anthers are spherical and two-lobed. The ovary is hairy, oblong, and borne on a short stalk, generally containing two chambers, each with a single seed. The style rises upward. The fruit is a legume, attached to a long stalk, nearly three-quarters circular in shape. The portion extending from the pedicel to the upper end of the style remains straight. The entire fruit is encased in a wavy, veined, hairy, membranous wing. Its center is thickened, rough, and woody, housing the seed(s), which do not naturally open upon maturity. Typically, the fruit contains a single kidney-shaped seed, though occasionally it may be two. [9,10]

Description of the Drug

The drug is derived from the heartwood of Pterocarpus marsupium. It appears as irregularly shaped fragments of varying sizes and thicknesses. The surface exhibits a golden yellowish-brown hue interspersed with darker streaks. The texture is extremely hard and brittle. When immersed in water, it produces a yellow-colored solution that displays blue fluorescence. Microscopic examination of a transverse section reveals alternating layers of larger and smaller polygonal cells, composed of tracheids, fibre tracheids, xylem parenchyma, and xylem rays. The xylem vessels are scattered throughout the section. Tyloses, often containing tannins, are prominently observed. The tracheids are elongated, have thick walls, tapering ends, and possess simple pits. Xylem parenchyma cells are rectangular in

Website: https://ijpdd.org/ ISSN: 2584-2897 Vol. 2, Issue 5, May, 2025

Page No.: 44-50

shape, also bearing simple pits, while the xylem rays are uniseriate to biseriate. Calcium oxalate crystals

are present within the tissue, but starch grains are absent.[11]

Figure 1- Picture of *Pterocarpus marsupium* [36]

Table 2- Vernacular name of Pterocarpus marsupium [11]

Language	Synonym(s)
Sanskrit	Bījaka, Pītāsara, Asanaka, Bījasāra
Assamese	Aajar
Bengali	Piyasala, Pitasala
English	Indian Kino Tree
Gujarati	Biyo
Hindi	Vijyasara, Bija
Kannada	Bijasara, Asana
Kashmiri	Lal Chandeur
Malayalam	Venga
Marathi	Bibala
Oriya	Piashala
Punjabi	Chandan Lal, Channanlal

Phytochemistry

The ethyl acetate extract derived from the dried and powdered heartwood of *Pterocarpus marsupium* was found to contain several phytoconstituents, including pterostilbene, (2S)-7-hydroxyflavanone, isoliquiritigenin, liquiritigenin, 7,4'-dihydroxyflavone, marsupsin, pterosupin, phydroxybenzaldehyde, (2R)-3-(p-hydroxyphenyl)-lactic acid, and a compound identified as pm-33. [12] According to Tripathi and Joshi, the ethyl

acetate fraction of *Pterocarpus marsupium* yielded three key compounds: retusin-8-O- α -L-arabinopyranoside, naringenin, and lupeol.[13] Further chemical analysis of the ethyl acetate extract from an aqueous decoction of the dried heartwood led to the identification of pterocarpol. In another study, Handa and colleagues isolated a C-glucoside isoaurone, which they named pterocarposide. [14] Additionally, Suri et al. discovered a novel C-glucoside, 1-(2',6'-dihydroxyphenyl)- β -D-

International Journal of Pharmaceutical Drug Design (IJPDD)
Website: https://ijpdd.org/

ISSN: 2584-2897 Vol. 2, Issue 5, May, 2025

Page No.: 44-50

glucopyranoside, from the aqueous extract of powdered heartwood.[15] Maurya and coworkers prepared an aqueous extract of the heartwood and isolated five previously unidentified flavonoid Cglucosides, namely pteroside, pteroisoauroside, marsuposide, flavon C-glucoside, and vijayosin, along with two known compounds: C-β-Dglucopyranosyl-2,6-dihydroxybenzene and sesquiterpene.[16] In a separate investigation, the bark of Pterocarpus marsupium was processed using ethanol extraction via percolation, revealing the presence of the phenolic compound (-)epicatechin. Additionally, the sterols sitosterol and stigmasterol were isolated. Tripathi and Joshi also reported the extraction of two novel flavonoid glycosides from the roots of this plant: 7-hydroxy-6,8-dimethylflavanone-7-O-α-L-arabinopyranoside and 7,8,4'-trihydroxy-3',5'-dimethoxyflavanone-4'-O-β-D-glucopyranoside.[17]

Documented Pharmacological Properties of *Pterocarpus marsupium*

- 1. Antihyperlipidemic **Activity:** The synergistic impact of a combined methanolic extract from Ocimum sanctum leaves and Pterocarpus marsupium heartwood was evaluated in both nondiabetic and oxidative stress-induced diabetic female Wistar rats (diabetes induced via alloxan administration). When administered at a dose of 500 mg/kg body weight, the combined extracts significantly improved lipid profile abnormalities (dyslipidemia) and enhanced the body's intrinsic antioxidant defense mechanisms in both test groups. [18,19] Furthermore, ethanolic extracts prepared from the wood and bark of P. marsupium, administered at a combined dose of 150 mg/kg body weight each, resulted in a notable reduction in blood glucose and lipid levels in albino Wistar rats with alloxan-induced diabetes (150 mg/kg, intraperitoneally) over a 14day treatment period.[20]
- 2. Antihyperglycemic Activity: The hypoglycemic potential of key phenolic compounds isolated from *P. marsupium* heartwood—marsupsin, pterosupin, and pterostilbene—was evaluated in streptozotocin-induced diabetic rats. Intraperitoneal administration of marsupsin and pterostilbene resulted in a substantial

decrease in blood glucose levels, underscoring their effectiveness as natural antihyperglycemic agents [21,22].

- **3. Antidiarrheal Activity:** The ethanolic extract of *P. marsupium* heartwood demonstrated significant antidiarrheal activity in castor oil- and charcoal-induced gastrointestinal motility models in rats. At doses of 250 and 500 mg/kg body weight, the extract markedly reduced the frequency and severity of diarrheal episodes, supporting its traditional application for the treatment of diarrhea [23].
- 4. Antifungal Activity: In a ten-day clinical evaluation, the alcoholic extract of *P. marsupium* exhibited superior antifungal efficacy, with 78% and 93% of cases showing positive outcomes by the seventh and tenth day of treatment, respectively. In comparison, the aqueous extract showed a 73% effectiveness rate. The alcoholic formulation also produced noticeable therapeutic effects within just three days of application against *Tinea cruris* and *Tinea corporis*, validating its role as an effective topical antifungal agent [24].
- 5. Anti-Cataract Activity: The aqueous bark extract of *P. marsupium* demonstrated anticataract properties in alloxan-induced diabetic rat models. The treatment helped delay or prevent cataract formation, indicating its potential as a natural anticataract therapeutic [25].
- Anti-Inflammatory **Activity:** Both methanolic and aqueous extracts of P. marsupium were tested using carrageenan-induced rat paw edema model to assess their anti-inflammatory efficacy. The methanolic extract at 50 mg/kg and the aqueous extract at 100 mg/kg significantly reduced inflammation. Pterostilbene, a prominent compound in the plant, has also been recognized for its potent antiinflammatory effects [26,27].
- 7. Toxic Effects: Due to its astringent properties, *Pterocarpus marsupium* is not recommended for individuals suffering from constipation [28]. A geotaxis assessment was performed on *P. marsupium* using both somatic and germ cells, particularly considering that herbal

International Journal of Pharmaceutical Drug Design (IJPDD)

Website: https://ijpdd.org/

ISSN: 2584-2897 Vol. 2, Issue 5, May, 2025

Page No.: 44-50

treatments for diabetes are often used over extended periods. The results indicated that the extract did not exhibit any significant geotaxis effects [29]. In a study conducted by an ICMR research group across multiple centers, *P. marsupium* demonstrated a substantial reduction in blood glucose levels without any apparent adverse effects [30].

- Antimicrobial Activity: The antimicrobial efficacy of aqueous and methanolic bark extracts of P. marsupium was evaluated using the disc diffusion method. The inhibition zones ranged from 11 to 22 mm. The extracts showed significant bactericidal activity against a range of pathogens, including Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhi, Proteus mirabilis, and Micrococcus sp. The methanolic extract of the stem bark, including apical, middle, and mature bark, exhibited potent antibacterial effects at various concentrations [31].
- 9. Anticancer Activity: The anticancer properties of *P. marsupium* were studied by Gosetti et al. using calcein acetoxymethyl ester (calcein-AM) assays to assess the cytotoxicity of its aqueous extract. The study found that pterostilbene, a key compound in *P. marsupium*, inhibited cell proliferation. It induced mitochondrial apoptotic signals, including upregulation of Bax, and activated a cascade of caspases, leading to cell death. Pterostilbene showed potential as a multi-target agent for inducing apoptosis, with applications in the treatment of breast and prostate cancer [32, 33].
- 10. Antibacterial Activity: The antibacterial activity of methanolic extracts from the stem of P. marsupium was investigated using the paper disc diffusion method. The extract showed significant growth inhibition of both gram-positive bacteria (Bacillus coagulans) and gram-negative (Escherichia bacteria coli). concentration of 100 mg/mL was found to be highly effective in suppressing bacterial growth [34].

11. Hepatoprotective Activity: Pterocarpus methanolic extract marsupium demonstrated hepatoprotective effects. In a study, the extract was administered at doses of 100 and 300 mg/kg body weight per day for 21 days, resulting in a dose-dependent reduction in serum glucose levels. The extract also regulated biomarkers such as total bilirubin, serum proteins, enzymes like alanine aminotransferase (ALT), aspartate aminotransferase (AST), phosphatase alkaline (ALP). Histopathological analysis revealed normal hepatic cords with no fatty infiltration or necrosis in the treated groups, indicating the hepatoprotective potential of the plant [35].

Conclusion

Pterocarpus marsupium is a valuable medicinal plant with a rich ethnobotanical history and a wide spectrum of pharmacological activities. Its diverse bioactive constituents—especially flavonoids, stilbenes, and tannins—contribute to its therapeutic potential in managing chronic and acute health conditions such as diabetes, inflammation, microbial infections, cancer, and liver disorders. Numerous in vivo and in vitro studies have validated the efficacy of its extracts, particularly in reducing blood glucose levels and improving lipid profiles, making it a strong natural candidate for anti-diabetic plant formulations. The also demonstrates significant antimicrobial and anticancer activities, attributed mainly to compounds like pterostilbene. Despite its promising health benefits, caution is warranted due to its astringent properties, which may aggravate certain conditions like constipation. The absence of major toxicity in long-term use further strengthens its potential for clinical applications. However, standardized dosing, clinical trials, and toxicity profiling are essential to ensure its safe and effective integration into modern therapeutics. Overall, P. marsupium represents a potent natural resource that deserves further exploration for novel drug development and integrative healthcare solutions.

Acknowledgement

The authors express their sincere gratitude to the Department of Pharmacy, Rameshwaram Institute of Technology and Management, Sitapur Road,

Vol. 2, Issue 5, May, 2025 Page No.: 44-50

Lucknow, for providing the necessary resources and institutional support throughout the preparation of this review. We are especially thankful to **Prof.** (**Dr.**) **Umesh Pratap Singh (Director)** and **Mrs. Nidhi Srivastava (Assistant Professor)** for his continuous encouragement and guidance. The authors also acknowledge the valuable inputs and assistance of fellow faculty members and research scholars that helped in enriching the quality of this work. Special thanks to library and digital resources that facilitated access to relevant scientific literature. Lastly, the authors are grateful to all those who directly or indirectly contributed to the successful completion of this manuscript.

REFERENCES

- Okpuzor J, Adebesin O, Ogbunugafor H, Amadi I. The potential of medicinal plants in sickle cell disease control: A review. Int J Biomed Health Sci 2008;4:47-55.
- World Health Organization. Guidelines on Developing Consumer on Proper use of Traditional, Complementary and Alternative Medicine. The Report of WHO Consultation on Proper Use of Traditional Medicine and Complementary Medicine by Consumers Held at Milan, Italy, 1-3 December 2003. 1st ed. Milan, Italy: World Health Organization; 2004. p. 3-9.
- Afolabi IS, Osikoya IO, Fajimi OD, Usoro PI, Ogunleye DO, Bisi-Adeniyi T, et al. Solenostemon monostachyus, Ipomoea involucrata and Carica papaya seed oil versus glutathione, or Vernonia amygdalina: Methanolic extracts of novel plants for the management of sickle cell anemia disease. BMC Complement Altern Med 2012;12:262.
- Ugbaja CC, Fawibe OO, Oyelakin AS, Fadimu IO, Ajiboye AA, Agboola DA. Comparative phytochemical and nutritional composition of Trichosanthes cucumerina (L.) and some Solanum lycopersicum (L.) cultivars in Nigeria. Am J Plant Sci 2017;8:297-309.
- Department of Ayurveda. Ayurveda Pharmacopoeia. 1st ed. Colombo, Sri Lanka: Department of Ayurveda; 1961. p. 161-2.

- Department of Ayurveda. Medicinal Plants in Sri Lanka. 1st ed. Colombo, Sri Lanka: Department of Ayurveda; 1989. p. 73.
- Dabur R. Identification of molecular pathways affected by treatment with heartwood water extract of Pterocarpus marsupium in MCF 7 cancer cell line. J Herb Med 2017;9:42-52.
- 8. Devgan M, Nandha A, Ansari SH. Pterocarpus marsupium Roxb. A comprehensive review. Pharmacogn Rev 2009;3:359-63.
- 9. V. Rajpal. Standardization of Botanicals, testing and extraction methods of medicinal herbs, Vol. II, (Eastern Publisher, New Delhi, 2005) 296-306.
- 10. Heart foundation resource page. Pterocarpus marsupium. Available at http://www.heart-intl.net/HEART /AlterMed/Complete/India/Herbs from India.htm; Accessed April 27, 2009.
- The Ayurvedic Pharmacopoeia of India, Part –I, Vol.-I, (The Controller of Publications, Civil Lines, Delhi, 1990) 12-13.
- 12. R. Maurya and A.B. Ray. Constituents of Pterocarpus marsupium. J Nat Prod. 47(1): 179-181 (1984).
- J. Tripathi and T. Joshi. Flavonoids from Pterocarpus marsupium. Planta Med. 54 (4): 371-372 (1988).
- S.S. Handa, R. Singh, R. Maurya, N.K. Satti, K.A. Suri and O.P. Suri. Pterocarposide, an isoaurone C-glucoside from Pterocarpus marsupium. Tetrahedron Lett. 41: 1579-1581 (2000).
- 15. K.A. Suri, N.K. Satti, B.D. Gupta and O.P. Suri. 1-(2', 6'- dihydroxyphenyl)-β-D-glucopyranoside, a novel C-glycoside from Pterocarpus marsupium. Indian J Chem. 42B: 432-433 (2003).
- R. Maurya, R. Singh, M. Deepak, S.S. Handa, P.P. Yadav and P.K. Mishra. Constituents of Pterocarpus marsupium: an ayurvedic crude drug. Phytochem. 65 (7): 915-920 (2004).
- J. Tripathi and T. Joshi. Phytochemical investigation of roots of Pterocarpus marsupium. Isolation and structural studies of two new flavanone glycosides. Z Naturforsch C. 43 (3-4): 184-186 (1988).

Website: https://ijpdd.org/ ISSN: 2584-2897

Vol. 2, Issue 5, May, 2025 Page No.: 44-50

- 18. Singh PK, Baxi D, Banerjee S. Ramachandran AV. Therapy with methanolic extract of Pterocarpus marsupium Roxb and Ocimum sanctum Linn reverses dyslipidemia and oxidative stress in alloxan induced type I diabetic rat model. Experimental and Toxicologic Pathology. 2012;64(5):441-8.
- 19. Shah DS. A preliminary study of the hypoglycemic action of heartwood of Ptero carpus marsupium roxb. Indian Journal of Medical Research. 1967;55(2):166-8.
- Jahromi MF, Ray AB, Chansouria JP. Antihyperlipidemic effect of flavonoids from Pterocarpus marsupium. Journal of Natural Products. 1993;56(7):989-94.
- 21. Segal KR. 2004. Type 2 diabets and disease management: Exploring the connection. Dis Manag. 2004; 7:511-522.
- Gupta R. Gupta RS. Effect of Pterocarpus Marsupium In Streptozotocin Induced Hyperglycemic state In Rats: comparison with Glibenc. Diabetologia Croatica 2009; 38(2):39-45.
- Dilpesh J. Patel T. Soma R. Antidiarrhoeal activity of ethanolic heartwood extract of Pterocarpus marsupium. 2011; 1:552-9
- Dhir GG. Mohan G. Verma BR. Mishra SS.Ind J of Dermatology, venercology &Leprology. 1982; 48(2): 154-156.
- 25. Vats V. Yadav SB. Et al "Anti-cataract activity of Pterocarpus marsupium bark and Trigonella foenumgracecum seeds extract in alloxandiabetic rats" Journal of Ethanopharmacol. 2004; 93(2): 289-294.
- Hougee S. Faber J. Sanders A. Hoijer M.A.
 Smit H.F (2005) Selective COX-2 inhibition by a Pterocarpus

- marsupiumextract characterized by Pterostilbene and its activity in healthy human volunteers. Plant. Med. 71:387-92.
- Salunkhe VR. Yadav AV. Shete A.S. Kane S.R. & Kulkarni A.S. (2005).
 Antiinflammatory activity of hydrogels of extracts of Pterocarpusmarsupium and coccinia indica. Indian Drugs; 42:319-321.
- The Ayurvedic Pharmacopoeia of India First Edition, Govt. Of India. Ministry of Health and Family Welfare. Dept of Indian systemof Medicine & Homeopathy. New Delhi 2001; 1(1):12-13.
- Mahnaz M. Swapnil S. Devasagayam G. Saroj S. J of Comp & Int Med. 2010; 7(1):14.
- 30. ICMR study group. Int. J. Med. Res. 1998; 108: 24-29.
- 31. Deepa R, Manjunatha H, Krishna V, Kumara Swamy BE. J Biotechnol Biomater. 2014; 4(1): 166-70.
- 32. Gosetti F, Chiuminatto U, Martiotti S, Bolfi B, Ranzato E, et al. (2016) Characterization of the volatile and non-volatile fractions of hearwood aqueous extract from Pterocarpus marsupium and evaluation of its cytotoxity against cancer cell lines. Planta Medica, 82(14):1295-1301.
- 33. Chakraborty, N Gupta, K Ghose. Toxicology in vitro, 2010, 24(4): 1215-1228
- 34. Kachhawa JBS, Sharma N, Tyagi S, Gupta RS, Sharma KK. Int J of Phar and Pharmac Sci, 2012; 4(1): 67-68.
- Mankani KL, Krishna V, Manjunatha BK, Vidya SM, Singh SDJ, Manohara YN et al. Int J Pharmacol, 2005; 37(3): 165-168.
- 36. tspkumars. Tree with Dense Green Foliage. Photograph. Accessed 3 May 2025.
