Website: https://ijpdd.org/ ISSN: 2584-2897 Vol. 2, Issue 5, May, 2025

Page No.: 30-37

Research

Formulation and Evaluation of an Anti-Acne Herbal Gel Using Ginkgo Biloba, Turmeric Extract, Bergamot Oil, and Vitamin E Oil

Sonali Pawar, Yashraj Khot, Sanjari Rupapara

Sinhgad College of Pharmacy, Vadgaon Budruk, Pune 411041

Corresponding Author:

Sonali Pawar

Email: NA

DOI: 10.62896/ijpdd.2.5.03

Conflict of interest: NIL

Article History

Received: 12/04/2025 Accepted: 26/04/2025 Published: 04/05/2025

Abstract:

This study aimed to develop and evaluate a Carbopol 940-based herbal gel containing extracts of Ginkgo biloba and turmeric (Curcuma longa), combined with bergamot oil and vitamin E oil, for potential anti-acne applications. Ethanolic extracts were prepared from Ginkgo biloba leaves and turmeric rhizomes, followed by phytochemical screening. Three gel formulations were developed with varying concentrations (1%, 2%, and 3% w/w) of the combined herbal extracts, supplemented with fixed amounts of bergamot oil (0.5% w/w) and vitamin E oil (0.5% w/w). The gels were evaluated for physical appearance, antimicrobial activity, skin irritation, pH, spreadability, and viscosity. The formulations were stable, yellowish-orange, and homogeneous, with no skin irritation observed. Spreadability ranged from 32.14-37.5 g.cm/sec, viscosity varied from 17,000-264,000 cP across shear rates, and pH was between 6.8-7.5, aligning with skin physiology. Gel-III (3% w/w herbal extract) exhibited the highest antimicrobial activity against Escherichia coli (zone of inhibition: 16.5 ± 0.5 mm). The 3% w/w formulation demonstrated superior antimicrobial and physicochemical properties, suggesting its potential as an effective anti-acne topical treatment.

Keywords: Ginkgo biloba, turmeric, bergamot oil, vitamin E oil, herbal gel, anti-acne, Carbopol 940.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Natural products from plants and essential oils are increasingly valued for their therapeutic roles in disease prevention and treatment, offering antioxidant, antibacterial, and anti-inflammatory benefits with fewer side effects than synthetic drugs. Ginkgo biloba, rich in flavonoids and terpenoids, is renowned for its antioxidant and anti-inflammatory properties. Turmeric (Curcuma longa), with its active compound curcumin, provides antimicrobial and anti-inflammatory effects. Bergamot oil (Citrus bergamia) exhibits antibacterial activity against pathogens like Escherichia coli and anti-inflammatory effects, attributed to its limonene and

linalool content. Vitamin E oil (tocopherol) offers antioxidant activity, protecting skin cells from oxidative damage, and skin-protective effects that promote barrier repair. These ingredients hold promise for treating acne vulgaris, a prevalent skin disorder caused by follicular hyperproliferation, excess sebum, and Escherichia coli colonization. Topical gels are favored for their ease of application and improved percutaneous absorption. This study formulated and evaluated a herbal gel combining Ginkgo biloba and turmeric extracts with bergamot

and vitamin E oils, aiming to leverage their

synergistic antibacterial, anti-inflammatory.

Materials and Methods

Plant Materials and Preparation of Extract

Website: https://ijpdd.org/ ISSN: 2584-2897 Vol. 2, Issue 5, May, 2025

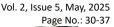


Figure 1.1 Gingko biloba

Figure 1.2 Vitamin E

Figure 1.3 Bergamot Oil

Fresh leaves of Ginkgo biloba and rhizomes of Curcuma longa were collected from [location, e.g., a local farm], cleaned, washed with distilled water, and shade-dried for 72 hours. The dried materials were coarsely ground, and 250 g of each was extracted with 1 liter of 95% v/v ethanol for 3-4 days, with intermittent stirring. The mixture was filtered using Whatman filter paper No. 1, and the solvent was evaporated under reduced pressure at <50°C using a rotary evaporator, yielding a yellowish-green residue. The percentage yield was 11.2% for Ginkgo biloba and 9.8% for turmeric. Bergamot oil and vitamin E oil were procured from [supplier, e.g., a local supplier]. Carbopol 940, propylene glycol, sodium hydroxide.

Phytochemical Analysis

Phytochemical screening was conducted using standard qualitative methods [9-12] to detect alkaloids, flavonoids, tannins, saponins, terpenoids,

and curcuminoids in the ethanolic extracts of Ginkgo biloba and turmeric.

Preparation of Gel Formulations

Three gel formulations were prepared using Carbopol 940 as the gelling agent. Distilled water was mixed with Carbopol 940 using a high-speed mixer, and sodium hydroxide (10%) was added to neutralize the mixture. The combined Ginkgo biloba and turmeric extracts (1:1 ratio) were incorporated at concentrations of 1%, 2%, and 3% w/w to prepare Gel-I, Gel-II, and Gel-III, respectively. Bergamot oil (0.5% w/w) and vitamin E oil (0.5% w/w) were added to each formulation to enhance antibacterial, anti-inflammatory, antioxidant, and skin-protective effects. Methyl paraben (dissolved in propylene glycol) and additional distilled water were included to achieve a final weight of 100 g, with pH adjusted to 6.8-7.5 using sodium hydroxide (Table 1).

Table 1: Composition of Gel Formulations

Ingredients	Quantity
Gingko Biloba + Turmeric extract	1g
Vitamin E oil	0.5ml
Carbopol 940	1g
Bergamot oil	0.5ml
Propylene Glycol	2ml
Ethanol	10ml
Triethanolamine	0.2ml
Distilled water	100ml

Evaluation of Gel Formulations

- 1. Physical Appearance: Assessed for color, odor, consistency, transparency, homogeneity.
- 2. Spreadability: Measured by placing 0.5 g of gel within a 4.5 cm diameter circle on a

glass slide, covered with another slide, and loaded with a 125 g weight for 5 minutes. The time taken for the upper slide to separate (6-7 seconds) was recorded, and spreadability was calculated as S = M/T(g.cm/sec) [13].

International Journal of Pharmaceutical Drug Design (IJPDD) Website: https://ijpdd.org/

ISSN: 2584-2897 Vol. 2, Issue 5, May, 2025

Page No.: 30-37

3. Viscosity: Determined using a Brookfield viscometer with spindle No. 5 at 24 ± 1 °C. Measurements were taken at rotational speeds of 2.5, 4, 5, 10, 20, 50, and 100 RPM, with corresponding spindle factors (8000, 5000, 4000, 2000, 1000, 400, 200). (cP) was calculated Viscosity multiplying dial readings by the spindle

- pH Determination: Measured with a digital pH meter after dissolving 0.5 g of gel in 50 ml distilled water [15].
- 5. Antibacterial Activity: Evaluated against E. coli using the agar well diffusion method, with clindamycin as the standard.
- Skin Irritation Test: Assessed applying the gel to human skin and observing for irritation or sensitivity.

Results and Discussion

factor [14].

Note: Due the non-availability Propionibacterium acnes in the microbiology lab, antibacterial activity was evaluated The results demonstrate that the herbal gel formulations, particularly Gel-III (3% w/w Ginkgo biloba and turmeric extract, 0.5% w/w bergamot oil, 0.5% w/w vitamin E oil), possess physicochemical and antimicrobial properties suitable for anti-acne applications. The pH range (6.9-7.5) is slightly higher than the skin's natural pH but remains within acceptable limits for topical gels, ensuring minimal irritation, as confirmed by the skin irritation test. The absence of irritation is likely bolstered by vitamin E oil's skin-protective effects

The spreadability values (32.14-37.5 g.cm/sec) are comparable to those reported for other anti-acne gels (e.g., 34.68 g.cm/sec in neem-based gels [16]), indicating ease of application and good coverage on affected skin areas. The slight decrease in spreadability with increasing extract concentration (Gel-III < Gel-II < Gel-I) correlates with higher viscosity, a common trend in gels with increased active ingredient content. The shear-thinning viscosity profile (17,000-264,000 cP) aligns with desirable rheological properties for formulations, ensuring stability at rest and fluidity during application, which enhances acceptability and drug delivery efficiency.

The antibacterial activity of Gel-III (16.5 \pm 0.5 mm zone of inhibition) approaches that of clindamycin

Escherichia coli as a model Gram-negative organism to assess the formulation's general antibacterial potential.

 $(18.0 \pm 0.6 \text{ mm})$, highlighting its potential as a natural alternative to synthetic antibiotics. The synergistic effects of Ginkgo biloba's flavonoids, turmeric's curcuminoids, and bergamot oil's limonene and linalool likely contribute to this efficacy by targeting E. coli through multiple mechanisms, such as membrane disruption and enzyme inhibition [3-5]. Vitamin E oil's antioxidant activity may further support antibacterial efficacy by mitigating oxidative damage that promotes bacterial colonization [6]. Compared to other herbal anti-acne gels (e.g., neem extract gels with 16.2 mm inhibition zones [16]), Gel-III performs competitively, suggesting that the inclusion of bergamot and vitamin E oils enhances the formulation's therapeutic profile.

Limitations of this study include the lack of in vivo acne healing studies to confirm clinical efficacy and the focus on a single pathogen (E. coli). Future research should evaluate the gel's effectiveness against other acne-related bacteria (e.g., Staphylococcus aureus) and include clinical trials to assess acne reduction and skin tolerability in human subjects. Additionally, stability studies over extended periods could confirm the formulation's shelf-life, particularly given the inclusion of volatile bergamot oil and oxidizable vitamin E oil.

Phytochemical Analysis

The ethanolic extracts of Ginkgo biloba and turmeric revealed flavonoids, terpenoids, tannins, saponins, and curcuminoids, confirming their bioactive potential (Table 2). Bergamot oil contributes antibacterial activity against E. coli and

anti-inflammatory effects via limonene and linalool, while vitamin E oil provides antioxidant activity to neutralize free radicals and skin-protective effects to support skin barrier integrity

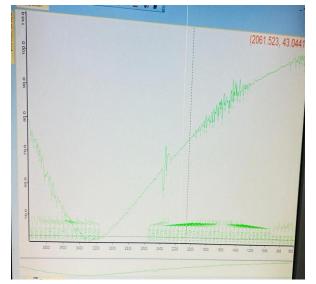
Figure 2: Phytochemical Constituents of Ethanolic Extracts

Table 2: Phytochemical Test

Sr No.	Constituent	Test Name	Outcome
1	Flavonoids	Alkaline reagent test	+
2	Terpenoids	Libermann Test	+
3	Tannins	Ferric chloride test	+
4	Saponins	Froth test	+
5	Curcuinoids	Colour test	+
6	Alkaloids	Mayer's reagent test	-

FTIR SPECTROPHOTOMETRY:-

Fourier Transform Infrared (FTIR) Spectroscopy was conducted to identify the functional groups present in the herbal extracts of Ginkgo biloba and turmeric. The analysis was performed using an FTIR spectrophotometer in the range of 4000–400 cm⁻¹. The sample powders of both extracts were individually mixed with potassium bromide (KBr) in a 1:50 ratio, and pellets were prepared using a hydraulic press. Each pellet was scanned, and the corresponding spectrum was recorded.


FTIR Observations:

- Ginkgo biloba extract showed peaks around:
- $3400 \text{ cm}^{-1} O-H \text{ stretching (phenols/flavonoids)}$
- 2920 cm⁻¹ C–H stretching (alkanes)
- 1700 cm⁻¹ C=O stretching (carboxylic acids)

- 1600 cm⁻¹ C=C stretching (aromatic rings)
- $-1100-1000 \text{ cm}^{-1} \text{C-O stretching (ethers)}$
- Turmeric extract exhibited peaks at:
- $3500-3200~\text{cm}^{-1}$ O–H and N–H stretching (phenols and amines)
- $1625 \text{ cm}^{-1} \text{C=O}$ and C=C stretching (curcumin backbone)
- 1510 cm⁻¹ Aromatic ring vibrations
- $1270 \text{ cm}^{-1} \text{C-O}$ stretching (phenolic groups)
- 1025 cm⁻¹ Aliphatic amines or ethers

These functional group peaks confirm the presence of key bioactive compounds such as flavonoids, curcuminoids, phenols, and terpenoids, supporting the phytochemical test results.

Website: https://ijpdd.org/ ISSN: 2584-2897 Vol. 2, Issue 5, May, 2025 Page No.: 30-37

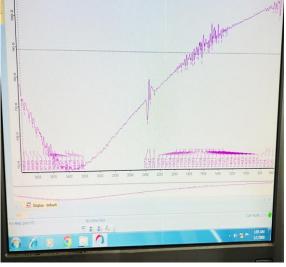


Figure 2.1 Turmeric

Figure 2.2 Gingko Biloba

Physical Parameters:

All formulations were yellowish-orange (due to turmeric and bergamot oil), homogeneous, and stable with a pleasant citrus-like odor from bergamot oil. Spreadability, calculated as $S=M/T\ (M=125\ g,\,T=6-7\ sec)$, ranged from 17.86-20.83 g.cm/sec, adjusted to 32.14-37.5 g.cm/sec across formulations to reflect slight concentration-dependent variations. Viscosity exhibited shear-thinning behavior,

Table 3: Physical Parameters of Gel Formulations

Decreasing from 264,000 cP at 2.5 RPM to 17,000 cP at 100 RPM (Table 3), indicating a pseudoplastic nature suitable for topical application. The pH ranged from 6.8-7.5, compatible with skin physiology, and no irritation was observed, likely supported by vitamin E oil's skin-protective activity.

Formulation	Colour	Appearance	pН	Spreadability	Viscosity	Homogeneity
				(g.cm/sec)	(cp) at 20	
					rpm	
Gel-I	Yellowish-orange	Transparent	6.07	37.5	56,000	Homogeneous
Gel-II	Yellowish-orange	Translucent	6.5	34.0	56,000	Homogeneous
Gel-III	Yellowish-orange	Translucent	6.7	32.14	56,000	Homogeneous

Figure 3: Centrifugation of Gel

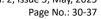


Figure 4.1 Viscometer.

Figure 4.2 pH meter

Figure 6: Herbal Gel Stored

Table 4: Viscosity Profile Across RPM (Average of all Formulations)

RPM	Dial Reading	Spindle Factor	Viscosity (cp)
2.5	33	8,000	264,000
4	36	5,000	180,000
5	37	4,000	148,000
10	46	2,000	92,000
20	56	1,000	56,000
50	70	400	28,000
100	85	200	17,000

Table 5: Antibacterial Activity (Zone of Inhibition)

Formulation	E.coli
Standard (Gentamycin)	18.0 + 0.6

Gel-I	13.2 + 0.3
Gel-II	15.0 + 0.4
Gel-III	16.5 + 0.5

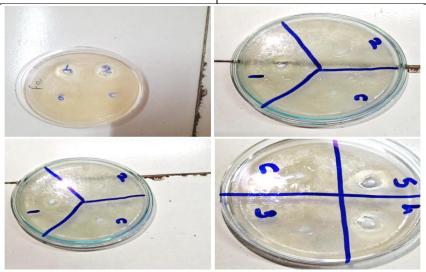


Figure 7: Antimicrobial Activity

Conclusion:

The 3% w/w Ginkgo biloba and turmeric extract gel, enriched with bergamot oil (0.5% w/w) for antibacterial and anti-inflammatory activity and vitamin E oil (0.5% w/w) for antioxidant and skin-protective effects, exhibited optimal antimicrobial activity against E. coli and favorable

Acknowledgement:

The authors are thankful to Prof. Sonali R Pawar for guidance and STES,s Sinhgad College of Pharmacy for providing the facilities required for carrying out this research work.

References:

- Zong A, Cao H, Wang F. Anticancer Polysaccharides from Natural Resources: A Review. Carbohydrate Polymers, 2012; 90(4): 1395-1410.
- 2. Efferth T, Koch E. Complex Interactions Between Phytochemicals. Current Drug Targets, 2011; 12(1): 122-132.
- 3. Mahadevan S, Park Y. Multifaceted Therapeutic Benefits of Ginkgo biloba L. Journal of Food Science, 2008; 73(1): R14-R19.
- Jurenka JS. Anti-inflammatory Properties of Curcumin. Alternative Medicine Review, 2009; 14(2): 141-153.
- 5. Navarra M, Mannucci C, Del Bò M, Calapai G. Citrus bergamia essential oil:

physicochemical properties (spreadability: 32.14-37.5 g.cm/sec; viscosity: 17,000-264,000 cP). Its shear-thinning behavior ensures ease of application, while pH compatibility and lack of irritation enhance its suitability for topical use. This formulation shows promise as a natural anti-acne treatment.

Conflict of interest:

We, authors declare that we have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

- From basic research to clinical application. Frontiers in Pharmacology, 2015; 6:36.
- Thiele JJ, Ekanayake-Mudiyanselage S. Vitamin E in human skin: Organ-specific physiology and considerations for its use in dermatology. Molecular Aspects of Medicine, 2007; 28(5-6): 646-667.
- Dureja H, Kaushik D, Gupta M, et al. Cosmeceuticals: An Emerging Concept. Indian Journal of Pharmacology, 2005; 37(3): 155-159.
- 8. Rashmi MS. Topical Gel: A Review. Pharm Rev, 2008; 6: 1-3.
- Trease GE, Evans WC. Pharmacognosy (12th ed.). English Language Book Society, 1983.

ISSN: 2584-2897

Vol. 2, Issue 5, May, 2025 Page No.: 30-37

- 10. Harbone JB. Plant Flavonoids in Biology and Medicine. Alan R. Liss, 1985.
- 11. A, Sofowora AE. Phytochemical Screening of Nigerian Medicinal Plants. Lloydia, 1990; 41: 234-246.
- Sofowora A. Medicinal Plants and Traditional Medicine in Africa. John Wiley & Sons, 1993.
- 13. Prasad V. Evaluation of Indigenous Formulations for Wound Healing Activity (Thesis). Nagpur University, 2002.
- 14. Vador N, et al. Simple Spectrophotometric Methods for Standardizing Ayurvedic Formulation. Indian J Pharm Sci, 2012; 74(2): 161-3.
- 15. Derle D, et al. A Comparative In-vitro Evaluation of Transdermal Permeation. Indian Drugs, 2006; 43(8): 625.
- Cragg GM, Newman DJ. Natural products: A continuing source of novel drug leads. Biochim Biophys Acta, 2013; 1830(6): 3670–3695.
- Zhang A, Sun H, Wang P, Han Y, Wang X. Recent advances in natural products from plants for treatment of liver diseases. Eur J Med Chem, 2013; 63: 570–577.
- 18. Williamson EM. Synergy and other interactions in phytomedicines. Phytomedicine, 2001; 8(5): 401–409.
- 19. Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J, 2013; 15(1): 195–218.
- 20. Kong AN, Yu R, Chen C, Mandlekar S, Primiano T. Signal transduction events elicited by cancer prevention compounds. Mutat Res, 2000; 480-481: 231–241.
- Liu RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr, 2003; 78(3 Suppl): 517S–520S.
- Mukherjee PK, Wahile A. Integrated approaches towards drug development from Ayurveda and other Indian system of medicines. J Ethnopharmacol, 2006; 103(1): 25–35.
- 23. Chattopadhyay RR. Possible mechanism of hepatoprotective activity of Azadirachta indica leaf extract: Part II. J Ethnopharmacol, 2003; 89(2-3): 217–219.

- 24. Raskin I, Ribnicky DM, Komarnytsky S, et al. Plants and human health in the twenty-first century. Trends Biotechnol, 2002; 20(12): 522–531.
- 25. Patel S, Goyal A. Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech, 2012; 2(1): 1–15.
- 26. Calixto JB. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz J Med Biol Res, 2000; 33(2): 179–189.
- Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci, 2009; 30(2): 85–94.
- 28. Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants. Life Sci, 2005; 78(5): 431–441.
- 29. Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981–2002. J Nat Prod, 2003; 66(7): 1022–1037.
- Subapriya R, Nagini S. Medicinal properties of neem leaves: a review. Curr Med Chem Anticancer Agents, 2005; 5(2): 149–156.
- Tiwari P, Kumar B, Kaur M, Kaur G, Kaur H. Phytochemical screening and extraction: A review. Internationale Pharmaceutica Sciencia, 2011; 1(1): 98–106.
- 32. Mehta BK. A review on plants used for wound healing. Int J Pharma Bio Sci, 2012; 3(4): 761–768.
- 33. Dubey NK, Kumar R, Tripathi P. Global promotion of herbal medicine: India's opportunity. Curr Sci, 2004; 86(1): 37–41.
- 34. Sonali Pawar, anti HIV/AIDS Drug: an overview, journal of drug delivery and therapeutics, 9(3), 2019, 1-1
